blender/intern/cycles/kernel/svm/svm.h
Dalai Felinto d15c5e51a1 Invert Color Cycles Node
as with the HSV node the OSL code is relying on the (yet to be implemented) autorename.

Also the svm code could use mix (svm_lerp) instead:
 32 . float3 color_inv = make_float3(1.0f, 1.0f, 1.0f) - color;
 35 . . stack_store_float3(stack, out_color, svm_lerp(color_inv, color, factor));

I have a feeling that each node 'program' should have the least program as possible. I'll see with Brecht later.
But overall I don't know if that's any fast. And apart from that I think we will need this kind of function to move to a library if multiple functions linked in are not a problem.
2011-12-03 23:05:35 +00:00

332 lines
9.3 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __SVM_H__
#define __SVM_H__
/* Shader Virtual Machine
*
* A shader is a list of nodes to be executed. These are simply read one after
* the other and executed, using an node counter. Each node and it's associated
* data is encoded as one or more uint4's in a 1D texture. If the data is larger
* than an uint4, the node can increase the node counter to compensate for this.
* Floats are encoded as int and then converted to float again.
*
* Nodes write their output into a stack. All stack data in the stack is
* floats, since it's all factors, colors and vectors. The stack will be stored
* in local memory on the GPU, as it would take too many register and indexes in
* ways not known at compile time. This seems the only solution even though it
* may be slow, with two positive factors. If the same shader is being executed,
* memory access will be coalesced, and on fermi cards, memory will actually be
* cached.
*
* The result of shader execution will be a single closure. This means the
* closure type, associated label, data and weight. Sampling from multiple
* closures is supported through the mix closure node, the logic for that is
* mostly taken care of in the SVM compiler.
*/
#include "svm_types.h"
CCL_NAMESPACE_BEGIN
/* Stack */
__device_inline float3 stack_load_float3(float *stack, uint a)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
return make_float3(stack[a+0], stack[a+1], stack[a+2]);
}
__device_inline void stack_store_float3(float *stack, uint a, float3 f)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
stack[a+0] = f.x;
stack[a+1] = f.y;
stack[a+2] = f.z;
}
__device_inline float stack_load_float(float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return stack[a];
}
__device_inline float stack_load_float_default(float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID)? __int_as_float(value): stack_load_float(stack, a);
}
__device_inline void stack_store_float(float *stack, uint a, float f)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = f;
}
__device_inline bool stack_valid(uint a)
{
return a != (uint)SVM_STACK_INVALID;
}
/* Reading Nodes */
__device_inline uint4 read_node(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
(*offset)++;
return node;
}
__device_inline float4 read_node_float(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
float4 f = make_float4(__int_as_float(node.x), __int_as_float(node.y), __int_as_float(node.z), __int_as_float(node.w));
(*offset)++;
return f;
}
__device_inline void decode_node_uchar4(uint i, uint *x, uint *y, uint *z, uint *w)
{
if(x) *x = (i & 0xFF);
if(y) *y = ((i >> 8) & 0xFF);
if(z) *z = ((i >> 16) & 0xFF);
if(w) *w = ((i >> 24) & 0xFF);
}
CCL_NAMESPACE_END
/* Nodes */
#include "svm_noise.h"
#include "svm_texture.h"
#include "svm_attribute.h"
#include "svm_gradient.h"
#include "svm_closure.h"
#include "svm_noisetex.h"
#include "svm_convert.h"
#include "svm_displace.h"
#include "svm_fresnel.h"
#include "svm_camera.h"
#include "svm_geometry.h"
#include "svm_hsv.h"
#include "svm_image.h"
#include "svm_invert.h"
#include "svm_light_path.h"
#include "svm_magic.h"
#include "svm_mapping.h"
#include "svm_wave.h"
#include "svm_math.h"
#include "svm_mix.h"
#include "svm_sepcomb_rgb.h"
#include "svm_musgrave.h"
#include "svm_sky.h"
#include "svm_tex_coord.h"
#include "svm_value.h"
#include "svm_voronoi.h"
CCL_NAMESPACE_BEGIN
/* Main Interpreter Loop */
__device_noinline void svm_eval_nodes(KernelGlobals *kg, ShaderData *sd, ShaderType type, float randb, int path_flag)
{
float stack[SVM_STACK_SIZE];
float closure_weight = 1.0f;
int offset = sd->shader & SHADER_MASK;
#ifdef __MULTI_CLOSURE__
sd->num_closure = 0;
sd->randb_closure = randb;
#else
sd->closure.type = NBUILTIN_CLOSURES;
#endif
while(1) {
uint4 node = read_node(kg, &offset);
switch(node.x) {
case NODE_SHADER_JUMP: {
if(type == SHADER_TYPE_SURFACE) offset = node.y;
else if(type == SHADER_TYPE_VOLUME) offset = node.z;
else if(type == SHADER_TYPE_DISPLACEMENT) offset = node.w;
else return;
break;
}
case NODE_CLOSURE_BSDF:
svm_node_closure_bsdf(kg, sd, stack, node, randb, path_flag);
break;
case NODE_CLOSURE_EMISSION:
svm_node_closure_emission(sd, stack, node);
break;
case NODE_CLOSURE_BACKGROUND:
svm_node_closure_background(sd, stack, node);
break;
case NODE_CLOSURE_HOLDOUT:
svm_node_closure_holdout(sd, stack, node);
break;
case NODE_CLOSURE_VOLUME:
svm_node_closure_volume(kg, sd, stack, node, path_flag);
break;
case NODE_CLOSURE_SET_WEIGHT:
svm_node_closure_set_weight(sd, node.y, node.z, node.w);
break;
case NODE_CLOSURE_WEIGHT:
svm_node_closure_weight(sd, stack, node.y);
break;
case NODE_EMISSION_WEIGHT:
svm_node_emission_weight(kg, sd, stack, node);
break;
case NODE_MIX_CLOSURE:
svm_node_mix_closure(sd, stack, node, &offset, &randb);
break;
case NODE_ADD_CLOSURE:
svm_node_add_closure(sd, stack, node.y, node.z, &offset, &randb, &closure_weight);
break;
case NODE_JUMP:
offset = node.y;
break;
#ifdef __TEXTURES__
case NODE_TEX_IMAGE:
svm_node_tex_image(kg, sd, stack, node);
break;
case NODE_TEX_ENVIRONMENT:
svm_node_tex_environment(kg, sd, stack, node);
break;
case NODE_TEX_SKY:
svm_node_tex_sky(kg, sd, stack, node.y, node.z);
break;
case NODE_TEX_GRADIENT:
svm_node_tex_gradient(sd, stack, node);
break;
case NODE_TEX_NOISE:
svm_node_tex_noise(kg, sd, stack, node, &offset);
break;
case NODE_TEX_VORONOI:
svm_node_tex_voronoi(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MUSGRAVE:
svm_node_tex_musgrave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_WAVE:
svm_node_tex_wave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MAGIC:
svm_node_tex_magic(kg, sd, stack, node, &offset);
break;
#endif
case NODE_CAMERA:
svm_node_camera(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_GEOMETRY:
svm_node_geometry(sd, stack, node.y, node.z);
break;
case NODE_GEOMETRY_BUMP_DX:
svm_node_geometry_bump_dx(sd, stack, node.y, node.z);
break;
case NODE_GEOMETRY_BUMP_DY:
svm_node_geometry_bump_dy(sd, stack, node.y, node.z);
break;
case NODE_LIGHT_PATH:
svm_node_light_path(sd, stack, node.y, node.z, path_flag);
break;
case NODE_CONVERT:
svm_node_convert(sd, stack, node.y, node.z, node.w);
break;
case NODE_VALUE_F:
svm_node_value_f(kg, sd, stack, node.y, node.z);
break;
case NODE_VALUE_V:
svm_node_value_v(kg, sd, stack, node.y, &offset);
break;
case NODE_INVERT:
svm_node_invert(sd, stack, node.y, node.z, node.w);
break;
case NODE_MIX:
svm_node_mix(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_SEPARATE_RGB:
svm_node_separate_rgb(sd, stack, node.y, node.z, node.w);
break;
case NODE_COMBINE_RGB:
svm_node_combine_rgb(sd, stack, node.y, node.z, node.w);
break;
case NODE_HSV:
svm_node_hsv(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_ATTR:
svm_node_attr(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DX:
svm_node_attr_bump_dx(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DY:
svm_node_attr_bump_dy(kg, sd, stack, node);
break;
case NODE_FRESNEL:
svm_node_fresnel(sd, stack, node.y, node.z, node.w);
break;
case NODE_LAYER_WEIGHT:
svm_node_layer_weight(sd, stack, node);
break;
case NODE_SET_DISPLACEMENT:
svm_node_set_displacement(sd, stack, node.y);
break;
case NODE_SET_BUMP:
svm_node_set_bump(sd, stack, node.y, node.z, node.w);
break;
case NODE_MATH:
svm_node_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_VECTOR_MATH:
svm_node_vector_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_MAPPING:
svm_node_mapping(kg, sd, stack, node.y, node.z, &offset);
break;
case NODE_TEX_COORD:
svm_node_tex_coord(kg, sd, stack, node.y, node.z);
break;
case NODE_TEX_COORD_BUMP_DX:
svm_node_tex_coord_bump_dx(kg, sd, stack, node.y, node.z);
break;
case NODE_TEX_COORD_BUMP_DY:
svm_node_tex_coord_bump_dy(kg, sd, stack, node.y, node.z);
break;
case NODE_EMISSION_SET_WEIGHT_TOTAL:
svm_node_emission_set_weight_total(kg, sd, node.y, node.z, node.w);
break;
case NODE_END:
default:
#ifndef __MULTI_CLOSURE__
sd->closure.weight *= closure_weight;
#endif
return;
}
}
}
CCL_NAMESPACE_END
#endif /* __SVM_H__ */