blender/intern/cycles/device/device_multi.cpp
Sergey Sharybin 0579eaae1f Cycles: Make all #include statements relative to cycles source directory
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.

For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.

Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.

This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.

Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.

Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner

Reviewed By: lukasstockner97, maiself, nirved, dingto

Subscribers: brecht

Differential Revision: https://developer.blender.org/D2586
2017-03-29 13:41:11 +02:00

363 lines
8.4 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <sstream>
#include "device/device.h"
#include "device/device_intern.h"
#include "device/device_network.h"
#include "render/buffers.h"
#include "util/util_foreach.h"
#include "util/util_list.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_time.h"
CCL_NAMESPACE_BEGIN
class MultiDevice : public Device
{
public:
struct SubDevice {
explicit SubDevice(Device *device_)
: device(device_) {}
Device *device;
map<device_ptr, device_ptr> ptr_map;
};
list<SubDevice> devices;
device_ptr unique_ptr;
MultiDevice(DeviceInfo& info, Stats &stats, bool background_)
: Device(info, stats, background_), unique_ptr(1)
{
Device *device;
foreach(DeviceInfo& subinfo, info.multi_devices) {
device = Device::create(subinfo, sub_stats_, background);
devices.push_back(SubDevice(device));
}
#ifdef WITH_NETWORK
/* try to add network devices */
ServerDiscovery discovery(true);
time_sleep(1.0);
vector<string> servers = discovery.get_server_list();
foreach(string& server, servers) {
device = device_network_create(info, stats, server.c_str());
if(device)
devices.push_back(SubDevice(device));
}
#endif
}
~MultiDevice()
{
foreach(SubDevice& sub, devices)
delete sub.device;
}
const string& error_message()
{
foreach(SubDevice& sub, devices) {
if(sub.device->error_message() != "") {
if(error_msg == "")
error_msg = sub.device->error_message();
break;
}
}
return error_msg;
}
virtual bool show_samples() const
{
if(devices.size() > 1) {
return false;
}
return devices.front().device->show_samples();
}
bool load_kernels(const DeviceRequestedFeatures& requested_features)
{
foreach(SubDevice& sub, devices)
if(!sub.device->load_kernels(requested_features))
return false;
return true;
}
void mem_alloc(const char *name, device_memory& mem, MemoryType type)
{
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->mem_alloc(name, mem, type);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_copy_to(mem);
}
mem.device_pointer = tmp;
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
device_ptr tmp = mem.device_pointer;
int i = 0, sub_h = h/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_copy_from(mem, sy, w, sh, elem);
i++;
}
mem.device_pointer = tmp;
}
void mem_zero(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_zero(mem);
}
mem.device_pointer = tmp;
}
void mem_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
stats.mem_free(mem.device_size);
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void const_copy_to(const char *name, void *host, size_t size)
{
foreach(SubDevice& sub, devices)
sub.device->const_copy_to(name, host, size);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType
interpolation,
ExtensionType extension)
{
VLOG(1) << "Texture allocate: " << name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->tex_alloc(name, mem, interpolation, extension);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
stats.mem_free(mem.device_size);
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->tex_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void pixels_alloc(device_memory& mem)
{
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->pixels_alloc(mem);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
}
void pixels_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->pixels_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void pixels_copy_from(device_memory& mem, int y, int w, int h)
{
device_ptr tmp = mem.device_pointer;
int i = 0, sub_h = h/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
mem.device_pointer = sub.ptr_map[tmp];
sub.device->pixels_copy_from(mem, sy, w, sh);
i++;
}
mem.device_pointer = tmp;
}
void draw_pixels(device_memory& rgba, int y, int w, int h, int dx, int dy, int width, int height, bool transparent,
const DeviceDrawParams &draw_params)
{
device_ptr tmp = rgba.device_pointer;
int i = 0, sub_h = h/devices.size();
int sub_height = height/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
int sheight = (i == (int)devices.size() - 1)? height - sub_height*i: sub_height;
int sdy = dy + i*sub_height;
/* adjust math for w/width */
rgba.device_pointer = sub.ptr_map[tmp];
sub.device->draw_pixels(rgba, sy, w, sh, dx, sdy, width, sheight, transparent, draw_params);
i++;
}
rgba.device_pointer = tmp;
}
void map_tile(Device *sub_device, RenderTile& tile)
{
foreach(SubDevice& sub, devices) {
if(sub.device == sub_device) {
if(tile.buffer) tile.buffer = sub.ptr_map[tile.buffer];
if(tile.rng_state) tile.rng_state = sub.ptr_map[tile.rng_state];
}
}
}
int device_number(Device *sub_device)
{
int i = 0;
foreach(SubDevice& sub, devices) {
if(sub.device == sub_device)
return i;
i++;
}
return -1;
}
int get_split_task_count(DeviceTask& task)
{
int total_tasks = 0;
list<DeviceTask> tasks;
task.split(tasks, devices.size());
foreach(SubDevice& sub, devices) {
if(!tasks.empty()) {
DeviceTask subtask = tasks.front();
tasks.pop_front();
total_tasks += sub.device->get_split_task_count(subtask);
}
}
return total_tasks;
}
void task_add(DeviceTask& task)
{
list<DeviceTask> tasks;
task.split(tasks, devices.size());
foreach(SubDevice& sub, devices) {
if(!tasks.empty()) {
DeviceTask subtask = tasks.front();
tasks.pop_front();
if(task.buffer) subtask.buffer = sub.ptr_map[task.buffer];
if(task.rgba_byte) subtask.rgba_byte = sub.ptr_map[task.rgba_byte];
if(task.rgba_half) subtask.rgba_half = sub.ptr_map[task.rgba_half];
if(task.shader_input) subtask.shader_input = sub.ptr_map[task.shader_input];
if(task.shader_output) subtask.shader_output = sub.ptr_map[task.shader_output];
if(task.shader_output_luma) subtask.shader_output_luma = sub.ptr_map[task.shader_output_luma];
sub.device->task_add(subtask);
}
}
}
void task_wait()
{
foreach(SubDevice& sub, devices)
sub.device->task_wait();
}
void task_cancel()
{
foreach(SubDevice& sub, devices)
sub.device->task_cancel();
}
protected:
Stats sub_stats_;
};
Device *device_multi_create(DeviceInfo& info, Stats &stats, bool background)
{
return new MultiDevice(info, stats, background);
}
CCL_NAMESPACE_END