blender/intern/cycles/kernel/geom/geom_triangle.h
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

205 lines
7.6 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Triangle Primitive
*
* Basic triangle with 3 vertices is used to represent mesh surfaces. For BVH
* ray intersection we use a precomputed triangle storage to accelerate
* intersection at the cost of more memory usage */
CCL_NAMESPACE_BEGIN
/* normal on triangle */
ccl_device_inline float3 triangle_normal(KernelGlobals *kg, ShaderData *sd)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
const float3 v0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
const float3 v1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
const float3 v2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
/* return normal */
if(sd->object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
return normalize(cross(v2 - v0, v1 - v0));
}
else {
return normalize(cross(v1 - v0, v2 - v0));
}
}
/* point and normal on triangle */
ccl_device_inline void triangle_point_normal(KernelGlobals *kg, int object, int prim, float u, float v, float3 *P, float3 *Ng, int *shader)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 v0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
float3 v1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
float3 v2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
/* compute point */
float t = 1.0f - u - v;
*P = (u*v0 + v*v1 + t*v2);
/* get object flags */
int object_flag = kernel_tex_fetch(__object_flag, object);
/* compute normal */
if(object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
*Ng = normalize(cross(v2 - v0, v1 - v0));
}
else {
*Ng = normalize(cross(v1 - v0, v2 - v0));
}
/* shader`*/
*shader = kernel_tex_fetch(__tri_shader, prim);
}
/* Triangle vertex locations */
ccl_device_inline void triangle_vertices(KernelGlobals *kg, int prim, float3 P[3])
{
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
P[0] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
P[1] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
P[2] = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
}
/* Interpolate smooth vertex normal from vertices */
ccl_device_inline float3 triangle_smooth_normal(KernelGlobals *kg, float3 Ng, int prim, float u, float v)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 n0 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.x));
float3 n1 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.y));
float3 n2 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.z));
float3 N = safe_normalize((1.0f - u - v)*n2 + u*n0 + v*n1);
return is_zero(N)? Ng: N;
}
/* Ray differentials on triangle */
ccl_device_inline void triangle_dPdudv(KernelGlobals *kg, int prim, ccl_addr_space float3 *dPdu, ccl_addr_space float3 *dPdv)
{
/* fetch triangle vertex coordinates */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
const float3 p0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
const float3 p1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
const float3 p2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
/* compute derivatives of P w.r.t. uv */
*dPdu = (p0 - p2);
*dPdv = (p1 - p2);
}
/* Reading attributes on various triangle elements */
ccl_device float triangle_attribute_float(KernelGlobals *kg, const ShaderData *sd, const AttributeDescriptor desc, float *dx, float *dy)
{
if(desc.element == ATTR_ELEMENT_FACE) {
if(dx) *dx = 0.0f;
if(dy) *dy = 0.0f;
return kernel_tex_fetch(__attributes_float, desc.offset + sd->prim);
}
else if(desc.element == ATTR_ELEMENT_VERTEX || desc.element == ATTR_ELEMENT_VERTEX_MOTION) {
uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
float f0 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.x);
float f1 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.y);
float f2 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.z);
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(desc.element == ATTR_ELEMENT_CORNER) {
int tri = desc.offset + sd->prim*3;
float f0 = kernel_tex_fetch(__attributes_float, tri + 0);
float f1 = kernel_tex_fetch(__attributes_float, tri + 1);
float f2 = kernel_tex_fetch(__attributes_float, tri + 2);
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = 0.0f;
if(dy) *dy = 0.0f;
return 0.0f;
}
}
ccl_device float3 triangle_attribute_float3(KernelGlobals *kg, const ShaderData *sd, const AttributeDescriptor desc, float3 *dx, float3 *dy)
{
if(desc.element == ATTR_ELEMENT_FACE) {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
return float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + sd->prim));
}
else if(desc.element == ATTR_ELEMENT_VERTEX || desc.element == ATTR_ELEMENT_VERTEX_MOTION) {
uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.x));
float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.y));
float3 f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.z));
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(desc.element == ATTR_ELEMENT_CORNER || desc.element == ATTR_ELEMENT_CORNER_BYTE) {
int tri = desc.offset + sd->prim*3;
float3 f0, f1, f2;
if(desc.element == ATTR_ELEMENT_CORNER) {
f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 0));
f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 1));
f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 2));
}
else {
f0 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 0));
f1 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 1));
f2 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 2));
}
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
return make_float3(0.0f, 0.0f, 0.0f);
}
}
CCL_NAMESPACE_END