blender/intern/cycles/kernel/kernel_passes.h
Brecht Van Lommel 6da6f8d33f Cycles: CUDA faster rendering of small tiles, using multiple samples like OpenCL.
The work size is still very conservative, and this doesn't help for progressive
refine. For that we will need to render multiple tiles at the same time. But this
should already help for denoising renders that require too much memory with big
tiles, and just generally soften the performance dropoff with small tiles.

Differential Revision: https://developer.blender.org/D2856
2017-10-04 21:58:47 +02:00

377 lines
13 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#if defined(__SPLIT_KERNEL__) || defined(__KERNEL_CUDA__)
#define __ATOMIC_PASS_WRITE__
#endif
ccl_device_inline void kernel_write_pass_float(ccl_global float *buffer, float value)
{
ccl_global float *buf = buffer;
#ifdef __ATOMIC_PASS_WRITE__
atomic_add_and_fetch_float(buf, value);
#else
*buf += value;
#endif
}
ccl_device_inline void kernel_write_pass_float3(ccl_global float *buffer, float3 value)
{
#ifdef __ATOMIC_PASS_WRITE__
ccl_global float *buf_x = buffer + 0;
ccl_global float *buf_y = buffer + 1;
ccl_global float *buf_z = buffer + 2;
atomic_add_and_fetch_float(buf_x, value.x);
atomic_add_and_fetch_float(buf_y, value.y);
atomic_add_and_fetch_float(buf_z, value.z);
#else
ccl_global float3 *buf = (ccl_global float3*)buffer;
*buf += value;
#endif
}
ccl_device_inline void kernel_write_pass_float4(ccl_global float *buffer, float4 value)
{
#ifdef __ATOMIC_PASS_WRITE__
ccl_global float *buf_x = buffer + 0;
ccl_global float *buf_y = buffer + 1;
ccl_global float *buf_z = buffer + 2;
ccl_global float *buf_w = buffer + 3;
atomic_add_and_fetch_float(buf_x, value.x);
atomic_add_and_fetch_float(buf_y, value.y);
atomic_add_and_fetch_float(buf_z, value.z);
atomic_add_and_fetch_float(buf_w, value.w);
#else
ccl_global float4 *buf = (ccl_global float4*)buffer;
*buf += value;
#endif
}
#ifdef __DENOISING_FEATURES__
ccl_device_inline void kernel_write_pass_float_variance(ccl_global float *buffer, float value)
{
kernel_write_pass_float(buffer, value);
/* The online one-pass variance update that's used for the megakernel can't easily be implemented
* with atomics, so for the split kernel the E[x^2] - 1/N * (E[x])^2 fallback is used. */
kernel_write_pass_float(buffer+1, value*value);
}
# ifdef __ATOMIC_PASS_WRITE__
# define kernel_write_pass_float3_unaligned kernel_write_pass_float3
# else
ccl_device_inline void kernel_write_pass_float3_unaligned(ccl_global float *buffer, float3 value)
{
buffer[0] += value.x;
buffer[1] += value.y;
buffer[2] += value.z;
}
# endif
ccl_device_inline void kernel_write_pass_float3_variance(ccl_global float *buffer, float3 value)
{
kernel_write_pass_float3_unaligned(buffer, value);
kernel_write_pass_float3_unaligned(buffer+3, value*value);
}
ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg, ccl_global float *buffer,
int sample, float path_total, float path_total_shaded)
{
if(kernel_data.film.pass_denoising_data == 0)
return;
buffer += (sample & 1)? DENOISING_PASS_SHADOW_B : DENOISING_PASS_SHADOW_A;
path_total = ensure_finite(path_total);
path_total_shaded = ensure_finite(path_total_shaded);
kernel_write_pass_float(buffer, path_total);
kernel_write_pass_float(buffer+1, path_total_shaded);
float value = path_total_shaded / max(path_total, 1e-7f);
kernel_write_pass_float(buffer+2, value*value);
}
#endif /* __DENOISING_FEATURES__ */
ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg,
ShaderData *sd,
ccl_addr_space PathState *state,
PathRadiance *L)
{
#ifdef __DENOISING_FEATURES__
if(state->denoising_feature_weight == 0.0f) {
return;
}
L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length);
/* Skip implicitly transparent surfaces. */
if(sd->flag & SD_HAS_ONLY_VOLUME) {
return;
}
float3 normal = make_float3(0.0f, 0.0f, 0.0f);
float3 albedo = make_float3(0.0f, 0.0f, 0.0f);
float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
continue;
/* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
normal += sc->N * sc->sample_weight;
sum_weight += sc->sample_weight;
if(!bsdf_is_specular_like(sc)) {
albedo += sc->weight;
sum_nonspecular_weight += sc->sample_weight;
}
}
/* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
if((sum_weight == 0.0f) || (sum_nonspecular_weight*4.0f > sum_weight)) {
if(sum_weight != 0.0f) {
normal /= sum_weight;
}
L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal);
L->denoising_albedo += ensure_finite3(state->denoising_feature_weight * albedo);
state->denoising_feature_weight = 0.0f;
}
#else
(void) kg;
(void) sd;
(void) state;
(void) L;
#endif /* __DENOISING_FEATURES__ */
}
#ifdef __KERNEL_DEBUG__
ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg,
ccl_global float *buffer,
PathRadiance *L)
{
int flag = kernel_data.film.pass_flag;
if(flag & PASS_BVH_TRAVERSED_NODES) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_nodes,
L->debug_data.num_bvh_traversed_nodes);
}
if(flag & PASS_BVH_TRAVERSED_INSTANCES) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances,
L->debug_data.num_bvh_traversed_instances);
}
if(flag & PASS_BVH_INTERSECTIONS) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_intersections,
L->debug_data.num_bvh_intersections);
}
if(flag & PASS_RAY_BOUNCES) {
kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces,
L->debug_data.num_ray_bounces);
}
}
#endif /* __KERNEL_DEBUG__ */
ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L,
ShaderData *sd, ccl_addr_space PathState *state, float3 throughput)
{
#ifdef __PASSES__
int path_flag = state->flag;
if(!(path_flag & PATH_RAY_CAMERA))
return;
int flag = kernel_data.film.pass_flag;
if(!(flag & PASS_ALL))
return;
if(!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
if(!(sd->flag & SD_TRANSPARENT) ||
kernel_data.film.pass_alpha_threshold == 0.0f ||
average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold)
{
if(state->sample == 0) {
if(flag & PASS_DEPTH) {
float depth = camera_distance(kg, sd->P);
kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth);
}
if(flag & PASS_OBJECT_ID) {
float id = object_pass_id(kg, sd->object);
kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id);
}
if(flag & PASS_MATERIAL_ID) {
float id = shader_pass_id(kg, sd);
kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id);
}
}
if(flag & PASS_NORMAL) {
float3 normal = shader_bsdf_average_normal(kg, sd);
kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
}
if(flag & PASS_UV) {
float3 uv = primitive_uv(kg, sd);
kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv);
}
if(flag & PASS_MOTION) {
float4 speed = primitive_motion_vector(kg, sd);
kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed);
kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f);
}
state->flag |= PATH_RAY_SINGLE_PASS_DONE;
}
}
if(flag & (PASS_DIFFUSE_INDIRECT|PASS_DIFFUSE_COLOR|PASS_DIFFUSE_DIRECT))
L->color_diffuse += shader_bsdf_diffuse(kg, sd)*throughput;
if(flag & (PASS_GLOSSY_INDIRECT|PASS_GLOSSY_COLOR|PASS_GLOSSY_DIRECT))
L->color_glossy += shader_bsdf_glossy(kg, sd)*throughput;
if(flag & (PASS_TRANSMISSION_INDIRECT|PASS_TRANSMISSION_COLOR|PASS_TRANSMISSION_DIRECT))
L->color_transmission += shader_bsdf_transmission(kg, sd)*throughput;
if(flag & (PASS_SUBSURFACE_INDIRECT|PASS_SUBSURFACE_COLOR|PASS_SUBSURFACE_DIRECT))
L->color_subsurface += shader_bsdf_subsurface(kg, sd)*throughput;
if(flag & PASS_MIST) {
/* bring depth into 0..1 range */
float mist_start = kernel_data.film.mist_start;
float mist_inv_depth = kernel_data.film.mist_inv_depth;
float depth = camera_distance(kg, sd->P);
float mist = saturate((depth - mist_start)*mist_inv_depth);
/* falloff */
float mist_falloff = kernel_data.film.mist_falloff;
if(mist_falloff == 1.0f)
;
else if(mist_falloff == 2.0f)
mist = mist*mist;
else if(mist_falloff == 0.5f)
mist = sqrtf(mist);
else
mist = powf(mist, mist_falloff);
/* modulate by transparency */
float3 alpha = shader_bsdf_alpha(kg, sd);
L->mist += (1.0f - mist)*average(throughput*alpha);
}
#endif
}
ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L)
{
#ifdef __PASSES__
int flag = kernel_data.film.pass_flag;
if(!kernel_data.film.use_light_pass)
return;
if(flag & PASS_DIFFUSE_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, L->indirect_diffuse);
if(flag & PASS_GLOSSY_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, L->indirect_glossy);
if(flag & PASS_TRANSMISSION_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect, L->indirect_transmission);
if(flag & PASS_SUBSURFACE_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect, L->indirect_subsurface);
if(flag & PASS_DIFFUSE_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, L->direct_diffuse);
if(flag & PASS_GLOSSY_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, L->direct_glossy);
if(flag & PASS_TRANSMISSION_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct, L->direct_transmission);
if(flag & PASS_SUBSURFACE_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct, L->direct_subsurface);
if(flag & PASS_EMISSION)
kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, L->emission);
if(flag & PASS_BACKGROUND)
kernel_write_pass_float3(buffer + kernel_data.film.pass_background, L->background);
if(flag & PASS_AO)
kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, L->ao);
if(flag & PASS_DIFFUSE_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, L->color_diffuse);
if(flag & PASS_GLOSSY_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, L->color_glossy);
if(flag & PASS_TRANSMISSION_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color, L->color_transmission);
if(flag & PASS_SUBSURFACE_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, L->color_subsurface);
if(flag & PASS_SHADOW) {
float4 shadow = L->shadow;
shadow.w = kernel_data.film.pass_shadow_scale;
kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, shadow);
}
if(flag & PASS_MIST)
kernel_write_pass_float(buffer + kernel_data.film.pass_mist, 1.0f - L->mist);
#endif
}
ccl_device_inline void kernel_write_result(KernelGlobals *kg, ccl_global float *buffer,
int sample, PathRadiance *L)
{
float alpha;
float3 L_sum = path_radiance_clamp_and_sum(kg, L, &alpha);
kernel_write_pass_float4(buffer, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha));
kernel_write_light_passes(kg, buffer, L);
#ifdef __DENOISING_FEATURES__
if(kernel_data.film.pass_denoising_data) {
# ifdef __SHADOW_TRICKS__
kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, average(L->path_total), average(L->path_total_shaded));
# else
kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f);
# endif
if(kernel_data.film.pass_denoising_clean) {
float3 noisy, clean;
path_radiance_split_denoising(kg, L, &noisy, &clean);
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
noisy);
kernel_write_pass_float3_unaligned(buffer + kernel_data.film.pass_denoising_clean,
clean);
}
else {
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
ensure_finite3(L_sum));
}
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_NORMAL,
L->denoising_normal);
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_ALBEDO,
L->denoising_albedo);
kernel_write_pass_float_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH,
L->denoising_depth);
}
#endif /* __DENOISING_FEATURES__ */
#ifdef __KERNEL_DEBUG__
kernel_write_debug_passes(kg, buffer, L);
#endif
}
CCL_NAMESPACE_END