blender/intern/cycles/kernel/svm/svm_texture.h

260 lines
6.3 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Voronoi Distances */
__device float voronoi_distance(NodeDistanceMetric distance_metric, float3 d, float e)
{
if(distance_metric == NODE_VORONOI_DISTANCE_SQUARED)
return dot(d, d);
if(distance_metric == NODE_VORONOI_ACTUAL_DISTANCE)
return len(d);
if(distance_metric == NODE_VORONOI_MANHATTAN)
return fabsf(d.x) + fabsf(d.y) + fabsf(d.z);
if(distance_metric == NODE_VORONOI_CHEBYCHEV)
return fmaxf(fabsf(d.x), fmaxf(fabsf(d.y), fabsf(d.z)));
if(distance_metric == NODE_VORONOI_MINKOVSKY_H)
return sqrtf(fabsf(d.x)) + sqrtf(fabsf(d.y)) + sqrtf(fabsf(d.y));
if(distance_metric == NODE_VORONOI_MINKOVSKY_4)
return sqrtf(sqrtf(dot(d*d, d*d)));
if(distance_metric == NODE_VORONOI_MINKOVSKY)
return powf(powf(fabsf(d.x), e) + powf(fabsf(d.y), e) + powf(fabsf(d.z), e), 1.0f/e);
return 0.0f;
}
/* Voronoi / Worley like */
__device_noinline void voronoi(float3 p, NodeDistanceMetric distance_metric, float e, float da[4], float3 pa[4])
{
/* returns distances in da and point coords in pa */
int xx, yy, zz, xi, yi, zi;
xi = (int)floorf(p.x);
yi = (int)floorf(p.y);
zi = (int)floorf(p.z);
da[0] = 1e10f;
da[1] = 1e10f;
da[2] = 1e10f;
da[3] = 1e10f;
pa[0] = make_float3(0.0f, 0.0f, 0.0f);
pa[1] = make_float3(0.0f, 0.0f, 0.0f);
pa[2] = make_float3(0.0f, 0.0f, 0.0f);
pa[3] = make_float3(0.0f, 0.0f, 0.0f);
for(xx = xi-1; xx <= xi+1; xx++) {
for(yy = yi-1; yy <= yi+1; yy++) {
for(zz = zi-1; zz <= zi+1; zz++) {
float3 ip = make_float3((float)xx, (float)yy, (float)zz);
float3 vp = cellnoise_color(ip);
float3 pd = p - (vp + ip);
float d = voronoi_distance(distance_metric, pd, e);
vp += ip;
if(d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if(d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if(d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if(d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
}
__device float voronoi_Fn(float3 p, int n)
{
float da[4];
float3 pa[4];
voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
return da[n];
}
__device float voronoi_FnFn(float3 p, int n1, int n2)
{
float da[4];
float3 pa[4];
voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
return da[n2] - da[n1];
}
__device float voronoi_F1(float3 p) { return voronoi_Fn(p, 0); }
__device float voronoi_F2(float3 p) { return voronoi_Fn(p, 1); }
__device float voronoi_F3(float3 p) { return voronoi_Fn(p, 2); }
__device float voronoi_F4(float3 p) { return voronoi_Fn(p, 3); }
__device float voronoi_F1F2(float3 p) { return voronoi_FnFn(p, 0, 1); }
__device float voronoi_Cr(float3 p)
{
/* crackle type pattern, just a scale/clamp of F2-F1 */
float t = 10.0f*voronoi_F1F2(p);
return (t > 1.0f)? 1.0f: t;
}
__device float voronoi_F1S(float3 p) { return 2.0f*voronoi_F1(p) - 1.0f; }
__device float voronoi_F2S(float3 p) { return 2.0f*voronoi_F2(p) - 1.0f; }
__device float voronoi_F3S(float3 p) { return 2.0f*voronoi_F3(p) - 1.0f; }
__device float voronoi_F4S(float3 p) { return 2.0f*voronoi_F4(p) - 1.0f; }
__device float voronoi_F1F2S(float3 p) { return 2.0f*voronoi_F1F2(p) - 1.0f; }
__device float voronoi_CrS(float3 p) { return 2.0f*voronoi_Cr(p) - 1.0f; }
/* Noise Bases */
__device float noise_basis(float3 p, NodeNoiseBasis basis)
{
/* Only Perlin enabled for now, others break CUDA compile by making kernel
too big, with compile using > 4GB, due to everything being inlined. */
#if 0
if(basis == NODE_NOISE_PERLIN)
#endif
return noise(p);
#if 0
if(basis == NODE_NOISE_VORONOI_F1)
return voronoi_F1S(p);
if(basis == NODE_NOISE_VORONOI_F2)
return voronoi_F2S(p);
if(basis == NODE_NOISE_VORONOI_F3)
return voronoi_F3S(p);
if(basis == NODE_NOISE_VORONOI_F4)
return voronoi_F4S(p);
if(basis == NODE_NOISE_VORONOI_F2_F1)
return voronoi_F1F2S(p);
if(basis == NODE_NOISE_VORONOI_CRACKLE)
return voronoi_CrS(p);
if(basis == NODE_NOISE_CELL_NOISE)
return cellnoise(p);
return 0.0f;
#endif
}
/* Soft/Hard Noise */
__device float noise_basis_hard(float3 p, NodeNoiseBasis basis, int hard)
{
float t = noise_basis(p, basis);
return (hard)? fabsf(2.0f*t - 1.0f): t;
}
/* Waves */
__device float noise_wave(NodeWaveType wave, float a)
{
if(wave == NODE_WAVE_SINE) {
return 0.5f + 0.5f*sin(a);
}
else if(wave == NODE_WAVE_SAW) {
float b = 2.0f*M_PI_F;
int n = (int)(a / b);
a -= n*b;
if(a < 0.0f) a += b;
return a / b;
}
else if(wave == NODE_WAVE_TRI) {
float b = 2.0f*M_PI_F;
float rmax = 1.0f;
return rmax - 2.0f*fabsf(floorf((a*(1.0f/b))+0.5f) - (a*(1.0f/b)));
}
return 0.0f;
}
/* Turbulence */
__device_noinline float noise_turbulence(float3 p, NodeNoiseBasis basis, float octaves, int hard)
{
float fscale = 1.0f;
float amp = 1.0f;
float sum = 0.0f;
int i, n;
octaves = clamp(octaves, 0.0f, 16.0f);
n= (int)octaves;
for(i = 0; i <= n; i++) {
float t = noise_basis(fscale*p, basis);
if(hard)
t = fabsf(2.0f*t - 1.0f);
sum += t*amp;
amp *= 0.5f;
fscale *= 2.0f;
}
float rmd = octaves - floor(octaves);
if(rmd != 0.0f) {
float t = noise_basis(fscale*p, basis);
if(hard)
t = fabsf(2.0f*t - 1.0f);
float sum2 = sum + t*amp;
sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
sum2 *= ((float)(1 << (n+1))/(float)((1 << (n+2)) - 1));
return (1.0f - rmd)*sum + rmd*sum2;
}
else {
sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
return sum;
}
}
CCL_NAMESPACE_END