blender/intern/cycles/kernel/svm/bsdf_microfacet.h
Ton Roosendaal da376e0237 Cycles render engine, initial commit. This is the engine itself, blender modifications and build instructions will follow later.
Cycles uses code from some great open source projects, many thanks them:

* BVH building and traversal code from NVidia's "Understanding the Efficiency of Ray Traversal on GPUs":
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
* Open Shading Language for a large part of the shading system:
http://code.google.com/p/openshadinglanguage/
* Blender for procedural textures and a few other nodes.
* Approximate Catmull Clark subdivision from NVidia Mesh tools:
http://code.google.com/p/nvidia-mesh-tools/
* Sobol direction vectors from:
http://web.maths.unsw.edu.au/~fkuo/sobol/
* Film response functions from:
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
2011-04-27 11:58:34 +00:00

494 lines
19 KiB
C

/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __BSDF_MICROFACET_H__
#define __BSDF_MICROFACET_H__
CCL_NAMESPACE_BEGIN
/* GGX */
typedef struct BsdfMicrofacetGGXClosure {
//float3 m_N;
float m_ag;
float m_eta;
int m_refractive;
} BsdfMicrofacetGGXClosure;
__device void bsdf_microfacet_ggx_setup(ShaderData *sd, float3 N, float ag, float eta, bool refractive)
{
BsdfMicrofacetGGXClosure *self = (BsdfMicrofacetGGXClosure*)sd->svm_closure_data;
//self->m_N = N;
self->m_ag = clamp(ag, 1e-5f, 1.0f);
self->m_eta = eta;
self->m_refractive = (refractive)? 1: 0;
if(refractive)
sd->svm_closure = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
else
sd->svm_closure = CLOSURE_BSDF_MICROFACET_GGX_ID;
sd->flag |= SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
__device void bsdf_microfacet_ggx_blur(ShaderData *sd, float roughness)
{
BsdfMicrofacetGGXClosure *self = (BsdfMicrofacetGGXClosure*)sd->svm_closure_data;
self->m_ag = fmaxf(roughness, self->m_ag);
}
__device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderData *sd, const float3 I, const float3 omega_in, float *pdf)
{
const BsdfMicrofacetGGXClosure *self = (const BsdfMicrofacetGGXClosure*)sd->svm_closure_data;
float3 m_N = sd->N;
if(self->m_refractive == 1) return make_float3 (0, 0, 0);
float cosNO = dot(m_N, I);
float cosNI = dot(m_N, omega_in);
if(cosNI > 0 && cosNO > 0) {
// get half vector
float3 Hr = normalize(omega_in + I);
// eq. 20: (F*G*D)/(4*in*on)
// eq. 33: first we calculate D(m) with m=Hr:
float alpha2 = self->m_ag * self->m_ag;
float cosThetaM = dot(m_N, Hr);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
float out = (G * D) * 0.25f / cosNO;
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
*pdf = pm * 0.25f / dot(Hr, I);
return make_float3 (out, out, out);
}
return make_float3 (0, 0, 0);
}
__device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderData *sd, const float3 I, const float3 omega_in, float *pdf)
{
const BsdfMicrofacetGGXClosure *self = (const BsdfMicrofacetGGXClosure*)sd->svm_closure_data;
float3 m_N = sd->N;
if(self->m_refractive == 0) return make_float3 (0, 0, 0);
float cosNO = dot(m_N, I);
float cosNI = dot(m_N, omega_in);
if(cosNO <= 0 || cosNI >= 0)
return make_float3 (0, 0, 0); // vectors on same side -- not possible
// compute half-vector of the refraction (eq. 16)
float3 ht = -(self->m_eta * omega_in + I);
float3 Ht = normalize(ht);
float cosHO = dot(Ht, I);
float cosHI = dot(Ht, omega_in);
// eq. 33: first we calculate D(m) with m=Ht:
float alpha2 = self->m_ag * self->m_ag;
float cosThetaM = dot(m_N, Ht);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
// probability
float invHt2 = 1 / dot(ht, ht);
*pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (self->m_eta * self->m_eta)) * invHt2;
float out = (fabsf(cosHI * cosHO) * (self->m_eta * self->m_eta) * (G * D) * invHt2) / cosNO;
return make_float3 (out, out, out);
}
__device float bsdf_microfacet_ggx_albedo(const ShaderData *sd, const float3 I)
{
return 1.0f;
}
__device int bsdf_microfacet_ggx_sample(const ShaderData *sd, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
const BsdfMicrofacetGGXClosure *self = (const BsdfMicrofacetGGXClosure*)sd->svm_closure_data;
float3 m_N = sd->N;
float cosNO = dot(m_N, sd->I);
if(cosNO > 0) {
float3 X, Y, Z = m_N;
make_orthonormals(Z, &X, &Y);
// generate a random microfacet normal m
// eq. 35,36:
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
//tttt and sin(atan(x)) == x/sqrt(1+x^2)
float alpha2 = self->m_ag * self->m_ag;
float tanThetaM2 = alpha2 * randu / (1 - randu);
float cosThetaM = 1 / sqrtf(1 + tanThetaM2);
float sinThetaM = cosThetaM * sqrtf(tanThetaM2);
float phiM = 2 * M_PI_F * randv;
float3 m = (cosf(phiM) * sinThetaM) * X +
(sinf(phiM) * sinThetaM) * Y +
cosThetaM * Z;
if(self->m_refractive == 0) {
float cosMO = dot(m, sd->I);
if(cosMO > 0) {
// eq. 39 - compute actual reflected direction
*omega_in = 2 * cosMO * m - sd->I;
if(dot(sd->Ng, *omega_in) > 0) {
// microfacet normal is visible to this ray
// eq. 33
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
*pdf = pm * 0.25f / cosMO;
// eval BRDF*cosNI
float cosNI = dot(m_N, *omega_in);
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
// eq. 20: (F*G*D)/(4*in*on)
float out = (G * D) * 0.25f / cosNO;
*eval = make_float3(out, out, out);
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(m, sd->dI.dx)) * m - sd->dI.dx;
*domega_in_dy = (2 * dot(m, sd->dI.dy)) * m - sd->dI.dy;
// Since there is some blur to this reflection, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
*domega_in_dx *= 10;
*domega_in_dy *= 10;
#endif
}
}
} else {
// CAUTION: the i and o variables are inverted relative to the paper
// eq. 39 - compute actual refractive direction
float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
float3 dRdx, dRdy, dTdx, dTdy;
#endif
bool inside;
fresnel_dielectric(self->m_eta, m, sd->I, &R, &T,
#ifdef __RAY_DIFFERENTIALS__
sd->dI.dx, sd->dI.dy, &dRdx, &dRdy, &dTdx, &dTdy,
#endif
&inside);
if(!inside) {
*omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = dTdx;
*domega_in_dy = dTdy;
#endif
// eq. 33
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 24
float pm = D * cosThetaM;
// eval BRDF*cosNI
float cosNI = dot(m_N, *omega_in);
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
// eq. 21
float cosHI = dot(m, *omega_in);
float cosHO = dot(m, sd->I);
float Ht2 = self->m_eta * cosHI + cosHO;
Ht2 *= Ht2;
float out = (fabsf(cosHI * cosHO) * (self->m_eta * self->m_eta) * (G * D)) / (cosNO * Ht2);
// eq. 38 and eq. 17
*pdf = pm * (self->m_eta * self->m_eta) * fabsf(cosHI) / Ht2;
*eval = make_float3(out, out, out);
#ifdef __RAY_DIFFERENTIALS__
// Since there is some blur to this refraction, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
*domega_in_dx *= 10;
*domega_in_dy *= 10;
#endif
}
}
}
return (self->m_refractive == 1) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
}
/* BECKMANN */
typedef struct BsdfMicrofacetBeckmannClosure {
//float3 m_N;
float m_ab;
float m_eta;
int m_refractive;
} BsdfMicrofacetBeckmannClosure;
__device void bsdf_microfacet_beckmann_setup(ShaderData *sd, float3 N, float ab, float eta, bool refractive)
{
BsdfMicrofacetBeckmannClosure *self = (BsdfMicrofacetBeckmannClosure*)sd->svm_closure_data;
//self->m_N = N;
self->m_ab = clamp(ab, 1e-5f, 1.0f);
self->m_eta = eta;
self->m_refractive = (refractive)? 1: 0;
if(refractive)
sd->svm_closure = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
else
sd->svm_closure = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
sd->flag |= SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
}
__device void bsdf_microfacet_beckmann_blur(ShaderData *sd, float roughness)
{
BsdfMicrofacetBeckmannClosure *self = (BsdfMicrofacetBeckmannClosure*)sd->svm_closure_data;
self->m_ab = fmaxf(roughness, self->m_ab);
}
__device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderData *sd, const float3 I, const float3 omega_in, float *pdf)
{
const BsdfMicrofacetBeckmannClosure *self = (const BsdfMicrofacetBeckmannClosure*)sd->svm_closure_data;
float3 m_N = sd->N;
if(self->m_refractive == 1) return make_float3 (0, 0, 0);
float cosNO = dot(m_N, I);
float cosNI = dot(m_N, omega_in);
if(cosNO > 0 && cosNI > 0) {
// get half vector
float3 Hr = normalize(omega_in + I);
// eq. 20: (F*G*D)/(4*in*on)
// eq. 25: first we calculate D(m) with m=Hr:
float alpha2 = self->m_ab * self->m_ab;
float cosThetaM = dot(m_N, Hr);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (self->m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (self->m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
float out = (G * D) * 0.25f / cosNO;
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
*pdf = pm * 0.25f / dot(Hr, I);
return make_float3 (out, out, out);
}
return make_float3 (0, 0, 0);
}
__device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderData *sd, const float3 I, const float3 omega_in, float *pdf)
{
const BsdfMicrofacetBeckmannClosure *self = (const BsdfMicrofacetBeckmannClosure*)sd->svm_closure_data;
float3 m_N = sd->N;
if(self->m_refractive == 0) return make_float3 (0, 0, 0);
float cosNO = dot(m_N, I);
float cosNI = dot(m_N, omega_in);
if(cosNO <= 0 || cosNI >= 0)
return make_float3 (0, 0, 0);
// compute half-vector of the refraction (eq. 16)
float3 ht = -(self->m_eta * omega_in + I);
float3 Ht = normalize(ht);
float cosHO = dot(Ht, I);
float cosHI = dot(Ht, omega_in);
// eq. 33: first we calculate D(m) with m=Ht:
float alpha2 = self->m_ab * self->m_ab;
float cosThetaM = dot(m_N, Ht);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (self->m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (self->m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
// probability
float invHt2 = 1 / dot(ht, ht);
*pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (self->m_eta * self->m_eta)) * invHt2;
float out = (fabsf(cosHI * cosHO) * (self->m_eta * self->m_eta) * (G * D) * invHt2) / cosNO;
return make_float3 (out, out, out);
}
__device float bsdf_microfacet_beckmann_albedo(const ShaderData *sd, const float3 I)
{
return 1.0f;
}
__device int bsdf_microfacet_beckmann_sample(const ShaderData *sd, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
const BsdfMicrofacetBeckmannClosure *self = (const BsdfMicrofacetBeckmannClosure*)sd->svm_closure_data;
float3 m_N = sd->N;
float cosNO = dot(m_N, sd->I);
if(cosNO > 0) {
float3 X, Y, Z = m_N;
make_orthonormals(Z, &X, &Y);
// generate a random microfacet normal m
// eq. 35,36:
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
//tttt and sin(atan(x)) == x/sqrt(1+x^2)
float alpha2 = self->m_ab * self->m_ab;
float tanThetaM = sqrtf(-alpha2 * logf(1 - randu));
float cosThetaM = 1 / sqrtf(1 + tanThetaM * tanThetaM);
float sinThetaM = cosThetaM * tanThetaM;
float phiM = 2 * M_PI_F * randv;
float3 m = (cosf(phiM) * sinThetaM) * X +
(sinf(phiM) * sinThetaM) * Y +
cosThetaM * Z;
if(self->m_refractive == 0) {
float cosMO = dot(m, sd->I);
if(cosMO > 0) {
// eq. 39 - compute actual reflected direction
*omega_in = 2 * cosMO * m - sd->I;
if(dot(sd->Ng, *omega_in) > 0) {
// microfacet normal is visible to this ray
// eq. 25
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = tanThetaM * tanThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
*pdf = pm * 0.25f / cosMO;
// Eval BRDF*cosNI
float cosNI = dot(m_N, *omega_in);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (self->m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (self->m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
// eq. 20: (F*G*D)/(4*in*on)
float out = (G * D) * 0.25f / cosNO;
*eval = make_float3(out, out, out);
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(m, sd->dI.dx)) * m - sd->dI.dx;
*domega_in_dy = (2 * dot(m, sd->dI.dy)) * m - sd->dI.dy;
// Since there is some blur to this reflection, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
*domega_in_dx *= 10;
*domega_in_dy *= 10;
#endif
}
}
} else {
// CAUTION: the i and o variables are inverted relative to the paper
// eq. 39 - compute actual refractive direction
float3 R, T;
#ifdef __RAY_DIFFERENTIALS__
float3 dRdx, dRdy, dTdx, dTdy;
#endif
bool inside;
fresnel_dielectric(self->m_eta, m, sd->I, &R, &T,
#ifdef __RAY_DIFFERENTIALS__
sd->dI.dx, sd->dI.dy, &dRdx, &dRdy, &dTdx, &dTdy,
#endif
&inside);
if(!inside) {
*omega_in = T;
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = dTdx;
*domega_in_dy = dTdy;
#endif
// eq. 33
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = tanThetaM * tanThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
// eq. 24
float pm = D * cosThetaM;
// eval BRDF*cosNI
float cosNI = dot(m_N, *omega_in);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (self->m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (self->m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
// eq. 21
float cosHI = dot(m, *omega_in);
float cosHO = dot(m, sd->I);
float Ht2 = self->m_eta * cosHI + cosHO;
Ht2 *= Ht2;
float out = (fabsf(cosHI * cosHO) * (self->m_eta * self->m_eta) * (G * D)) / (cosNO * Ht2);
// eq. 38 and eq. 17
*pdf = pm * (self->m_eta * self->m_eta) * fabsf(cosHI) / Ht2;
*eval = make_float3(out, out, out);
#ifdef __RAY_DIFFERENTIALS__
// Since there is some blur to this refraction, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
*domega_in_dx *= 10;
*domega_in_dy *= 10;
#endif
}
}
}
return (self->m_refractive == 1) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
}
CCL_NAMESPACE_END
#endif /* __BSDF_MICROFACET_H__ */