blender/intern/cycles/kernel/svm/svm_texture.h
Ton Roosendaal da376e0237 Cycles render engine, initial commit. This is the engine itself, blender modifications and build instructions will follow later.
Cycles uses code from some great open source projects, many thanks them:

* BVH building and traversal code from NVidia's "Understanding the Efficiency of Ray Traversal on GPUs":
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
* Open Shading Language for a large part of the shading system:
http://code.google.com/p/openshadinglanguage/
* Blender for procedural textures and a few other nodes.
* Approximate Catmull Clark subdivision from NVidia Mesh tools:
http://code.google.com/p/nvidia-mesh-tools/
* Sobol direction vectors from:
http://web.maths.unsw.edu.au/~fkuo/sobol/
* Film response functions from:
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
2011-04-27 11:58:34 +00:00

241 lines
5.9 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Voronoi Distances */
__device float voronoi_distance(NodeDistanceMetric distance_metric, float3 d, float e)
{
if(distance_metric == NODE_VORONOI_DISTANCE_SQUARED)
return dot(d, d);
if(distance_metric == NODE_VORONOI_ACTUAL_DISTANCE)
return len(d);
if(distance_metric == NODE_VORONOI_MANHATTAN)
return fabsf(d.x) + fabsf(d.y) + fabsf(d.z);
if(distance_metric == NODE_VORONOI_CHEBYCHEV)
return fmaxf(fabsf(d.x), fmaxf(fabsf(d.y), fabsf(d.z)));
if(distance_metric == NODE_VORONOI_MINKOVSKY_H)
return sqrtf(fabsf(d.x)) + sqrtf(fabsf(d.y)) + sqrtf(fabsf(d.y));
if(distance_metric == NODE_VORONOI_MINKOVSKY_4)
return sqrtf(sqrtf(dot(d*d, d*d)));
if(distance_metric == NODE_VORONOI_MINKOVSKY)
return powf(powf(fabsf(d.x), e) + powf(fabsf(d.y), e) + powf(fabsf(d.z), e), 1.0f/e);
return 0.0f;
}
/* Voronoi / Worley like */
__device void voronoi(float3 p, NodeDistanceMetric distance_metric, float e, float da[4], float3 pa[4])
{
/* returns distances in da and point coords in pa */
int xx, yy, zz, xi, yi, zi;
xi = (int)floorf(p.x);
yi = (int)floorf(p.y);
zi = (int)floorf(p.z);
da[0] = 1e10f;
da[1] = 1e10f;
da[2] = 1e10f;
da[3] = 1e10f;
pa[0] = make_float3(0.0f, 0.0f, 0.0f);
pa[1] = make_float3(0.0f, 0.0f, 0.0f);
pa[2] = make_float3(0.0f, 0.0f, 0.0f);
pa[3] = make_float3(0.0f, 0.0f, 0.0f);
for(xx = xi-1; xx <= xi+1; xx++) {
for(yy = yi-1; yy <= yi+1; yy++) {
for(zz = zi-1; zz <= zi+1; zz++) {
float3 ip = make_float3(xx, yy, zz);
float3 vp = cellnoise_color(ip);
float3 pd = p - (vp + ip);
float d = voronoi_distance(distance_metric, pd, e);
vp += make_float3(xx, yy, zz);
if(d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if(d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if(d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if(d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
}
__device float voronoi_Fn(float3 p, int n)
{
float da[4];
float3 pa[4];
voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
return da[n];
}
__device float voronoi_FnFn(float3 p, int n1, int n2)
{
float da[4];
float3 pa[4];
voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
return da[n2] - da[n1];
}
__device float voronoi_F1(float3 p) { return voronoi_Fn(p, 0); }
__device float voronoi_F2(float3 p) { return voronoi_Fn(p, 1); }
__device float voronoi_F3(float3 p) { return voronoi_Fn(p, 2); }
__device float voronoi_F4(float3 p) { return voronoi_Fn(p, 3); }
__device float voronoi_F1F2(float3 p) { return voronoi_FnFn(p, 0, 1); }
__device float voronoi_Cr(float3 p)
{
/* crackle type pattern, just a scale/clamp of F2-F1 */
float t = 10.0f*voronoi_F1F2(p);
return (t > 1.0f)? 1.0f: t;
}
__device float voronoi_F1S(float3 p) { return 2.0f*voronoi_F1(p) - 1.0f; }
__device float voronoi_F2S(float3 p) { return 2.0f*voronoi_F2(p) - 1.0f; }
__device float voronoi_F3S(float3 p) { return 2.0f*voronoi_F3(p) - 1.0f; }
__device float voronoi_F4S(float3 p) { return 2.0f*voronoi_F4(p) - 1.0f; }
__device float voronoi_F1F2S(float3 p) { return 2.0f*voronoi_F1F2(p) - 1.0f; }
__device float voronoi_CrS(float3 p) { return 2.0f*voronoi_Cr(p) - 1.0f; }
/* Noise Bases */
__device float noise_basis(float3 p, NodeNoiseBasis basis)
{
/* Only Perlin enabled for now, others break CUDA compile by making kernel
too big, with compile using > 4GB, due to everything being inlined. */
#if 0
if(basis == NODE_NOISE_PERLIN)
#endif
return noise(p);
#if 0
if(basis == NODE_NOISE_VORONOI_F1)
return voronoi_F1S(p);
if(basis == NODE_NOISE_VORONOI_F2)
return voronoi_F2S(p);
if(basis == NODE_NOISE_VORONOI_F3)
return voronoi_F3S(p);
if(basis == NODE_NOISE_VORONOI_F4)
return voronoi_F4S(p);
if(basis == NODE_NOISE_VORONOI_F2_F1)
return voronoi_F1F2S(p);
if(basis == NODE_NOISE_VORONOI_CRACKLE)
return voronoi_CrS(p);
if(basis == NODE_NOISE_CELL_NOISE)
return cellnoise(p);
return 0.0f;
#endif
}
/* Soft/Hard Noise */
__device float noise_basis_hard(float3 p, NodeNoiseBasis basis, int hard)
{
float t = noise_basis(p, basis);
return (hard)? fabsf(2.0f*t - 1.0f): t;
}
/* Waves */
__device float noise_wave(NodeWaveType wave, float a)
{
if(wave == NODE_WAVE_SINE) {
return 0.5f + 0.5f*sin(a);
}
else if(wave == NODE_WAVE_SAW) {
float b = 2*M_PI;
int n = (int)(a / b);
a -= n*b;
if(a < 0) a += b;
return a / b;
}
else if(wave == NODE_WAVE_TRI) {
float b = 2*M_PI;
float rmax = 1.0f;
return rmax - 2.0f*fabsf(floorf((a*(1.0f/b))+0.5f) - (a*(1.0f/b)));
}
return 0.0f;
}
/* Turbulence */
__device float noise_turbulence(float3 p, NodeNoiseBasis basis, int octaves, int hard)
{
float fscale = 1.0f;
float amp = 1.0f;
float sum = 0.0f;
int i;
for(i = 0; i <= octaves; i++) {
float t = noise_basis(fscale*p, basis);
if(hard)
t = fabsf(2.0f*t - 1.0f);
sum += t*amp;
amp *= 0.5f;
fscale *= 2.0f;
}
sum *= ((float)(1 << octaves)/(float)((1 << (octaves+1)) - 1));
return sum;
}
CCL_NAMESPACE_END