blender/source/gameengine/VideoTexture/Texture.cpp
Benoit Bolsee 40f1c4f343 BGE: Various render improvements.
bge.logic.setRender(flag) to enable/disable render.
    The render pass is enabled by default but it can be disabled with
    bge.logic.setRender(False).
    Once disabled, the render pass is skipped and a new logic frame starts
    immediately. Note that VSync no longer limits the fps when render is off
    but the 'Use Frame Rate' option in the Render Properties still does.
    To run as many frames as possible, untick the option
    This function is useful when you don't need the default render, e.g.
    when doing offscreen render to an alternate device than the monitor.
    Note that without VSync, you must limit the frame rate by other means.

fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER])
    Use this method to create an offscreen buffer of given size, with given MSAA
    samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER)
    or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to
    retrieve the frame buffer on the host and the latter if you want to pass the render
    to another context (texture are proper OGL object, render buffers aren't)
    The object created by this function can only be used as a parameter of the
    bge.texture.ImageRender() constructor to send the the render to the FBO rather
    than to the frame buffer. This is best suited when you want to create a render
    of specific size, or if you need an image with an alpha channel.

bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0)
    Without arg, the refresh method of the image objects is pretty much a no-op, it
    simply invalidates the image so that on next texture refresh, the image will
    be recalculated.
    It is now possible to pass an optional buffer object to transfer the image (and
    recalculate it if it was invalid) to an external object. The object must implement
    the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels
    depending on format argument (only those 2 formats are supported) and ts is an
    optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file).
    With this function you don't need anymore to link the image object to a Texture
    object to use: the image object is self-sufficient.

bge.texture.ImageRender(scene, camera, fbo=None)
    Render to buffer is possible by passing a FBO object (see offScreenCreate).

bge.texture.ImageRender.render()
    Allows asynchronous render: call this method to render the scene but without
    extracting the pixels yet. The function returns as soon as the render commands
    have been send to the GPU. The render will proceed asynchronously in the GPU
    while the host can perform other tasks.
    To complete the render, you can either call refresh() directly of refresh the texture
    to which this object is the source. Asynchronous render is useful to achieve optimal
    performance: call render() on frame N and refresh() on frame N+1 to give as much as
    time as possible to the GPU to render the frame while the game engine can perform other tasks.

Support negative scale on camera.
    Camera scale was previously ignored in the BGE.
    It is now injected in the modelview matrix as a vertical or horizontal flip
    of the scene (respectively if scaleY<0 and scaleX<0).
    Note that the actual value of the scale is not used, only the sign.
    This allows to flip the image produced by ImageRender() without any performance
    degradation: the flip is integrated in the render itself.

Optimized image transfer from ImageRender to buffer.
    Previously, images that were transferred to the host were always going through
    buffers in VideoTexture. It is now possible to transfer ImageRender
    images to external buffer without intermediate copy (i.e. directly from OGL to buffer)
    if the attributes of the ImageRender objects are set as follow:
       flip=False, alpha=True, scale=False, depth=False, zbuff=False.
       (if you need to flip the image, use camera negative scale)
2016-06-11 22:05:20 +02:00

534 lines
15 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (c) 2007 The Zdeno Ash Miklas
*
* This source file is part of VideoTexture library
*
* Contributor(s):
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/VideoTexture/Texture.cpp
* \ingroup bgevideotex
*/
// implementation
#include "EXP_PyObjectPlus.h"
#include <structmember.h>
#include "KX_GameObject.h"
#include "KX_Light.h"
#include "RAS_MeshObject.h"
#include "RAS_ILightObject.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_image_types.h"
#include "IMB_imbuf_types.h"
#include "BKE_image.h"
#include "MEM_guardedalloc.h"
#include "KX_BlenderMaterial.h"
#include "BL_Texture.h"
#include "KX_KetsjiEngine.h"
#include "KX_PythonInit.h"
#include "Texture.h"
#include "ImageBase.h"
#include "Exception.h"
#include <memory.h>
#include "glew-mx.h"
extern "C" {
#include "IMB_imbuf.h"
}
// macro for exception handling and logging
#define CATCH_EXCP catch (Exception & exp) \
{ exp.report(); return NULL; }
// Blender GameObject type
static BlendType<KX_GameObject> gameObjectType ("KX_GameObject");
static BlendType<KX_LightObject> lightObjectType ("KX_LightObject");
// load texture
void loadTexture(unsigned int texId, unsigned int *texture, short *size,
bool mipmap)
{
// load texture for rendering
glBindTexture(GL_TEXTURE_2D, texId);
if (mipmap)
{
int i;
ImBuf *ibuf;
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
ibuf = IMB_allocFromBuffer(texture, NULL, size[0], size[1]);
IMB_makemipmap(ibuf, true);
for (i = 0; i < ibuf->miptot; i++) {
ImBuf *mip = IMB_getmipmap(ibuf, i);
glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA, mip->x, mip->y, 0, GL_RGBA, GL_UNSIGNED_BYTE, mip->rect);
}
IMB_freeImBuf(ibuf);
}
else
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, size[0], size[1], 0, GL_RGBA, GL_UNSIGNED_BYTE, texture);
}
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
// get pointer to material
RAS_IPolyMaterial * getMaterial (PyObject *obj, short matID)
{
// if object is available
if (obj != NULL)
{
// get pointer to texture image
KX_GameObject * gameObj = gameObjectType.checkType(obj);
if (gameObj != NULL && gameObj->GetMeshCount() > 0)
{
// get material from mesh
RAS_MeshObject * mesh = gameObj->GetMesh(0);
RAS_MeshMaterial *meshMat = mesh->GetMeshMaterial(matID);
if (meshMat != NULL && meshMat->m_bucket != NULL)
// return pointer to polygon or blender material
return meshMat->m_bucket->GetPolyMaterial();
}
}
// otherwise material was not found
return NULL;
}
// get pointer to a lamp
static KX_LightObject *getLamp(PyObject *obj)
{
// if object is available
if (obj == NULL) return NULL;
// returns NULL if obj is not a KX_LightObject
return lightObjectType.checkType(obj);
}
// get material ID
short getMaterialID(PyObject *obj, const char *name)
{
// search for material
for (short matID = 0;; ++matID)
{
// get material
RAS_IPolyMaterial * mat = getMaterial(obj, matID);
// if material is not available, report that no material was found
if (mat == NULL)
break;
// name is a material name if it starts with MA and a UV texture name if it starts with IM
if (name[0] == 'I' && name[1] == 'M') {
// if texture name matches
if (strcmp(mat->GetTextureName().ReadPtr(), name) == 0)
return matID;
}
else {
// if material name matches
if (strcmp(mat->GetMaterialName().ReadPtr(), name) == 0)
return matID;
}
}
// material was not found
return -1;
}
// Texture object allocation
static PyObject *Texture_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
// allocate object
Texture * self = reinterpret_cast<Texture*>(type->tp_alloc(type, 0));
// initialize object structure
self->m_actTex = 0;
self->m_orgSaved = false;
self->m_imgBuf = NULL;
self->m_imgTexture = NULL;
self->m_matTexture = NULL;
self->m_mipmap = false;
self->m_scaledImBuf = NULL;
self->m_source = NULL;
self->m_lastClock = 0.0;
// return allocated object
return reinterpret_cast<PyObject*>(self);
}
// forward declaration
PyObject *Texture_close(Texture *self);
int Texture_setSource(Texture *self, PyObject *value, void *closure);
// Texture object deallocation
static void Texture_dealloc(Texture *self)
{
// release renderer
Py_XDECREF(self->m_source);
// close texture
PyObject *ret = Texture_close(self);
Py_DECREF(ret);
// release scaled image buffer
IMB_freeImBuf(self->m_scaledImBuf);
// release object
Py_TYPE((PyObject *)self)->tp_free((PyObject *)self);
}
ExceptionID MaterialNotAvail;
ExpDesc MaterialNotAvailDesc(MaterialNotAvail, "Texture material is not available");
// Texture object initialization
static int Texture_init(Texture *self, PyObject *args, PyObject *kwds)
{
// parameters - game object with video texture
PyObject *obj = NULL;
// material ID
short matID = 0;
// texture ID
short texID = 0;
// texture object with shared texture ID
Texture * texObj = NULL;
static const char *kwlist[] = {"gameObj", "materialID", "textureID", "textureObj", NULL};
// get parameters
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|hhO!",
const_cast<char**>(kwlist), &obj, &matID, &texID, &TextureType,
&texObj))
return -1;
// if parameters are available
if (obj != NULL)
{
// process polygon material or blender material
try
{
// get pointer to texture image
RAS_IPolyMaterial * mat = getMaterial(obj, matID);
KX_LightObject * lamp = getLamp(obj);
if (mat != NULL)
{
// is it blender material or polygon material
if (mat->GetFlag() & RAS_BLENDERGLSL)
{
self->m_imgTexture = static_cast<KX_BlenderMaterial*>(mat)->getImage(texID);
self->m_useMatTexture = false;
} else
{
// get blender material texture
self->m_matTexture = static_cast<KX_BlenderMaterial*>(mat)->getTex(texID);
self->m_useMatTexture = true;
}
}
else if (lamp != NULL)
{
self->m_imgTexture = lamp->GetLightData()->GetTextureImage(texID);
self->m_useMatTexture = false;
}
// check if texture is available, if not, initialization failed
if (self->m_imgTexture == NULL && self->m_matTexture == NULL)
// throw exception if initialization failed
THRWEXCP(MaterialNotAvail, S_OK);
// if texture object is provided
if (texObj != NULL)
{
// copy texture code
self->m_actTex = texObj->m_actTex;
self->m_mipmap = texObj->m_mipmap;
if (texObj->m_source != NULL)
Texture_setSource(self, reinterpret_cast<PyObject*>(texObj->m_source), NULL);
}
else
// otherwise generate texture code
glGenTextures(1, (GLuint*)&self->m_actTex);
}
catch (Exception & exp)
{
exp.report();
return -1;
}
}
// initialization succeded
return 0;
}
// close added texture
PyObject *Texture_close(Texture * self)
{
// restore texture
if (self->m_orgSaved)
{
self->m_orgSaved = false;
// restore original texture code
if (self->m_useMatTexture)
self->m_matTexture->swapTexture(self->m_orgTex);
else
{
self->m_imgTexture->bindcode[TEXTARGET_TEXTURE_2D] = self->m_orgTex;
BKE_image_release_ibuf(self->m_imgTexture, self->m_imgBuf, NULL);
self->m_imgBuf = NULL;
}
// drop actual texture
if (self->m_actTex != 0)
{
glDeleteTextures(1, (GLuint *)&self->m_actTex);
self->m_actTex = 0;
}
}
Py_RETURN_NONE;
}
// refresh texture
static PyObject *Texture_refresh(Texture *self, PyObject *args)
{
// get parameter - refresh source
PyObject *param;
double ts = -1.0;
if (!PyArg_ParseTuple(args, "O|d:refresh", &param, &ts) || !PyBool_Check(param))
{
// report error
PyErr_SetString(PyExc_TypeError, "The value must be a bool");
return NULL;
}
// some trick here: we are in the business of loading a texture,
// no use to do it if we are still in the same rendering frame.
// We find this out by looking at the engine current clock time
KX_KetsjiEngine* engine = KX_GetActiveEngine();
if (engine->GetClockTime() != self->m_lastClock)
{
self->m_lastClock = engine->GetClockTime();
// set source refresh
bool refreshSource = (param == Py_True);
// try to proces texture from source
try
{
// if source is available
if (self->m_source != NULL)
{
// check texture code
if (!self->m_orgSaved)
{
self->m_orgSaved = true;
// save original image code
if (self->m_useMatTexture)
self->m_orgTex = self->m_matTexture->swapTexture(self->m_actTex);
else
{
// Swapping will work only if the GPU has already loaded the image.
// If not, it will delete and overwrite our texture on next render.
// To avoid that, we acquire the image buffer now.
// WARNING: GPU has a ImageUser to pass, we don't. Using NULL
// works on image file, not necessarily on other type of image.
self->m_imgBuf = BKE_image_acquire_ibuf(self->m_imgTexture, NULL, NULL);
self->m_orgTex = self->m_imgTexture->bindcode[TEXTARGET_TEXTURE_2D];
self->m_imgTexture->bindcode[TEXTARGET_TEXTURE_2D] = self->m_actTex;
}
}
// get texture
unsigned int * texture = self->m_source->m_image->getImage(self->m_actTex, ts);
// if texture is available
if (texture != NULL)
{
// get texture size
short * orgSize = self->m_source->m_image->getSize();
// calc scaled sizes
short size[2];
if (GLEW_ARB_texture_non_power_of_two)
{
size[0] = orgSize[0];
size[1] = orgSize[1];
}
else
{
size[0] = ImageBase::calcSize(orgSize[0]);
size[1] = ImageBase::calcSize(orgSize[1]);
}
// scale texture if needed
if (size[0] != orgSize[0] || size[1] != orgSize[1])
{
IMB_freeImBuf(self->m_scaledImBuf);
self->m_scaledImBuf = IMB_allocFromBuffer(texture, NULL, orgSize[0], orgSize[1]);
IMB_scaleImBuf(self->m_scaledImBuf, size[0], size[1]);
// use scaled image instead original
texture = self->m_scaledImBuf->rect;
}
// load texture for rendering
loadTexture(self->m_actTex, texture, size, self->m_mipmap);
}
// refresh texture source, if required
if (refreshSource) {
self->m_source->m_image->refresh();
}
}
}
CATCH_EXCP;
}
Py_RETURN_NONE;
}
// get OpenGL Bind Id
static PyObject *Texture_getBindId(Texture *self, void *closure)
{
unsigned int id = self->m_actTex;
return Py_BuildValue("h", id);
}
// get mipmap value
static PyObject *Texture_getMipmap(Texture *self, void *closure)
{
// return true if flag is set, otherwise false
if (self->m_mipmap) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
// set mipmap value
static int Texture_setMipmap(Texture *self, PyObject *value, void *closure)
{
// check parameter, report failure
if (value == NULL || !PyBool_Check(value))
{
PyErr_SetString(PyExc_TypeError, "The value must be a bool");
return -1;
}
// set mipmap
self->m_mipmap = value == Py_True;
// success
return 0;
}
// get source object
static PyObject *Texture_getSource(Texture *self, PyObject *value, void *closure)
{
// if source exists
if (self->m_source != NULL)
{
Py_INCREF(self->m_source);
return reinterpret_cast<PyObject*>(self->m_source);
}
// otherwise return None
Py_RETURN_NONE;
}
// set source object
int Texture_setSource(Texture *self, PyObject *value, void *closure)
{
// check new value
if (value == NULL || !pyImageTypes.in(Py_TYPE(value)))
{
// report value error
PyErr_SetString(PyExc_TypeError, "Invalid type of value");
return -1;
}
// increase ref count for new value
Py_INCREF(value);
// release previous
Py_XDECREF(self->m_source);
// set new value
self->m_source = reinterpret_cast<PyImage*>(value);
// return success
return 0;
}
// class Texture methods
static PyMethodDef textureMethods[] =
{
{ "close", (PyCFunction)Texture_close, METH_NOARGS, "Close dynamic texture and restore original"},
{ "refresh", (PyCFunction)Texture_refresh, METH_VARARGS, "Refresh texture from source"},
{NULL} /* Sentinel */
};
// class Texture attributes
static PyGetSetDef textureGetSets[] =
{
{(char*)"source", (getter)Texture_getSource, (setter)Texture_setSource, (char*)"source of texture", NULL},
{(char*)"mipmap", (getter)Texture_getMipmap, (setter)Texture_setMipmap, (char*)"mipmap texture", NULL},
{(char*)"bindId", (getter)Texture_getBindId, NULL, (char*)"OpenGL Bind Name", NULL},
{NULL}
};
// class Texture declaration
PyTypeObject TextureType =
{
PyVarObject_HEAD_INIT(NULL, 0)
"VideoTexture.Texture", /*tp_name*/
sizeof(Texture), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Texture_dealloc,/*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
&imageBufferProcs, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Texture objects", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
textureMethods, /* tp_methods */
0, /* tp_members */
textureGetSets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Texture_init, /* tp_init */
0, /* tp_alloc */
Texture_new, /* tp_new */
};