blender/intern/cycles/kernel/svm/svm_tex_coord.h
Sergey Sharybin df07a25d28 Cycles: Support texture coordinate from another object
This is the same as blender internal's texture mapping from another object,
so this way it's possible to control texture space of one object by another.

Quite straightforward change apart from the workaround for the stupidness of
the dependency graph. Now shader has flag telling that it depends on object
transform. This is the simplest way to know which shaders needs to be tagged
for update when object changes. This might give some false-positive tags now
but reducing them should not be priority for Cycles and rather be a priority
to bring new dependency graph.

Also GLSL preview does not support using other object for mapping.

This is actually correct for BI shading as well and to be addressed as
a part of general GLSL viewport improvements since it's not really clear
how to support this in GLSL.

Reviewers: brecht, juicyfruit

Subscribers: eyecandy, venomgfx

Differential Revision: https://developer.blender.org/D1021
2015-01-27 13:36:30 +05:00

353 lines
9.7 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Texture Coordinate Node */
ccl_device void svm_node_tex_coord(KernelGlobals *kg,
ShaderData *sd,
int path_flag,
float *stack,
uint4 node,
int *offset)
{
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = sd->P;
if(node.w == 0) {
if(sd->object != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
tfm.w = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
if(sd->object != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != OBJECT_NONE)
data = transform_point(&tfm, sd->P);
else
data = transform_point(&tfm, sd->P + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P);
else
data = camera_world_to_ndc(kg, sd, sd->P);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != OBJECT_NONE)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P;
#ifdef __VOLUME__
if(sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
}
ccl_device void svm_node_tex_coord_bump_dx(KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint type, uint out_offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = sd->P + sd->dP.dx;
if(sd->object != OBJECT_NONE)
object_inverse_position_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
if(sd->object != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != OBJECT_NONE)
data = transform_point(&tfm, sd->P + sd->dP.dx);
else
data = transform_point(&tfm, sd->P + sd->dP.dx + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dx);
else
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dx);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != OBJECT_NONE)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P + sd->dP.dx;
#ifdef __VOLUME__
if(sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, stack, type, out_offset);
#endif
}
ccl_device void svm_node_tex_coord_bump_dy(KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint type, uint out_offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
data = sd->P + sd->dP.dy;
if(sd->object != OBJECT_NONE)
object_inverse_position_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
if(sd->object != OBJECT_NONE)
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != OBJECT_NONE)
data = transform_point(&tfm, sd->P + sd->dP.dy);
else
data = transform_point(&tfm, sd->P + sd->dP.dy + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dy);
else
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dy);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != OBJECT_NONE)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P + sd->dP.dy;
#ifdef __VOLUME__
if(sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, stack, type, out_offset);
#endif
}
ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset, strength_offset, normal_offset, space;
decode_node_uchar4(node.y, &color_offset, &strength_offset, &normal_offset, &space);
float3 color = stack_load_float3(stack, color_offset);
color = 2.0f*make_float3(color.x - 0.5f, color.y - 0.5f, color.z - 0.5f);
float3 N;
if(space == NODE_NORMAL_MAP_TANGENT) {
/* tangent space */
if(sd->object == OBJECT_NONE) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* first try to get tangent attribute */
AttributeElement attr_elem, attr_sign_elem, attr_normal_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
int attr_sign_offset = find_attribute(kg, sd, node.w, &attr_sign_elem);
int attr_normal_offset = find_attribute(kg, sd, ATTR_STD_VERTEX_NORMAL, &attr_normal_elem);
if(attr_offset == ATTR_STD_NOT_FOUND || attr_sign_offset == ATTR_STD_NOT_FOUND || attr_normal_offset == ATTR_STD_NOT_FOUND) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* get _unnormalized_ interpolated normal and tangent */
float3 tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
float sign = primitive_attribute_float(kg, sd, attr_sign_elem, attr_sign_offset, NULL, NULL);
float3 normal;
if(sd->shader & SHADER_SMOOTH_NORMAL) {
normal = primitive_attribute_float3(kg, sd, attr_normal_elem, attr_normal_offset, NULL, NULL);
}
else {
normal = sd->Ng;
object_inverse_normal_transform(kg, sd, &normal);
}
/* apply normal map */
float3 B = sign * cross(normal, tangent);
N = normalize(color.x * tangent + color.y * B + color.z * normal);
/* transform to world space */
object_normal_transform(kg, sd, &N);
}
else {
/* strange blender convention */
if(space == NODE_NORMAL_MAP_BLENDER_OBJECT || space == NODE_NORMAL_MAP_BLENDER_WORLD) {
color.y = -color.y;
color.z = -color.z;
}
/* object, world space */
N = color;
if(space == NODE_NORMAL_MAP_OBJECT || space == NODE_NORMAL_MAP_BLENDER_OBJECT)
object_normal_transform(kg, sd, &N);
else
N = normalize(N);
}
float strength = stack_load_float(stack, strength_offset);
if(strength != 1.0f) {
strength = max(strength, 0.0f);
N = normalize(sd->N + (N - sd->N)*strength);
}
stack_store_float3(stack, normal_offset, N);
}
ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint tangent_offset, direction_type, axis;
decode_node_uchar4(node.y, &tangent_offset, &direction_type, &axis, NULL);
float3 tangent;
if(direction_type == NODE_TANGENT_UVMAP) {
/* UV map */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
if(attr_offset == ATTR_STD_NOT_FOUND)
tangent = make_float3(0.0f, 0.0f, 0.0f);
else
tangent = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
}
else {
/* radial */
AttributeElement attr_elem;
int attr_offset = find_attribute(kg, sd, node.z, &attr_elem);
float3 generated;
if(attr_offset == ATTR_STD_NOT_FOUND)
generated = sd->P;
else
generated = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
if(axis == NODE_TANGENT_AXIS_X)
tangent = make_float3(0.0f, -(generated.z - 0.5f), (generated.y - 0.5f));
else if(axis == NODE_TANGENT_AXIS_Y)
tangent = make_float3(-(generated.z - 0.5f), 0.0f, (generated.x - 0.5f));
else
tangent = make_float3(-(generated.y - 0.5f), (generated.x - 0.5f), 0.0f);
}
object_normal_transform(kg, sd, &tangent);
tangent = cross(sd->N, normalize(cross(tangent, sd->N)));
stack_store_float3(stack, tangent_offset, tangent);
}
CCL_NAMESPACE_END