blender/extern/recastnavigation/Recast/Source/Recast.cpp
Campbell Barton 0128218254 recast and detour patch now builds again with GCC
- rearrange structs to work for 64bit
- define all vars before goto's
- ifdefs for qsort_r/qsort_s
- dont cast pointers to int only for NULL checks
- dont printf STR_String directly, get the char pointer from it

also minor change to gpu py module, no need to pass empty tuple to PyObject_CallObject, can just be NULL
2011-09-10 03:07:26 +00:00

273 lines
7.0 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
void rcIntArray::resize(int n)
{
if (n > m_cap)
{
if (!m_cap) m_cap = 8;
while (m_cap < n) m_cap *= 2;
int* newData = new int[m_cap];
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
delete [] m_data;
m_data = newData;
}
m_size = n;
}
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
{
// Calculate bounding box.
vcopy(bmin, verts);
vcopy(bmax, verts);
for (int i = 1; i < nv; ++i)
{
const float* v = &verts[i*3];
vmin(bmin, v);
vmax(bmax, v);
}
}
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
{
*w = (int)((bmax[0] - bmin[0])/cs+0.5f);
*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
}
bool rcCreateHeightfield(rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch)
{
hf.width = width;
hf.height = height;
hf.spans = new rcSpan*[hf.width*hf.height];
vcopy(hf.bmin, bmin);
vcopy(hf.bmax, bmax);
hf.cs = cs;
hf.ch = ch;
if (!hf.spans)
return false;
memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
return true;
}
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
{
float e0[3], e1[3];
vsub(e0, v1, v0);
vsub(e1, v2, v0);
vcross(norm, e0, e1);
vnormalize(norm);
}
void rcMarkWalkableTriangles(const float walkableSlopeAngle,
const float* verts, int nv,
const int* tris, int nt,
unsigned char* flags)
{
const float walkableThr = cosf(walkableSlopeAngle/180.0f*(float)M_PI);
float norm[3];
for (int i = 0; i < nt; ++i)
{
const int* tri = &tris[i*3];
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
// Check if the face is walkable.
if (norm[1] > walkableThr)
flags[i] |= RC_WALKABLE;
}
}
static int getSpanCount(unsigned char flags, rcHeightfield& hf)
{
const int w = hf.width;
const int h = hf.height;
int spanCount = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
{
if (s->flags == flags)
spanCount++;
}
}
}
return spanCount;
}
inline void setCon(rcCompactSpan& s, int dir, int i)
{
s.con &= ~(0xf << (dir*4));
s.con |= (i&0xf) << (dir*4);
}
bool rcBuildCompactHeightfield(const int walkableHeight, const int walkableClimb,
unsigned char flags, rcHeightfield& hf,
rcCompactHeightfield& chf)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const int w = hf.width;
const int h = hf.height;
const int spanCount = getSpanCount(flags, hf);
// Fill in header.
chf.width = w;
chf.height = h;
chf.spanCount = spanCount;
chf.walkableHeight = walkableHeight;
chf.walkableClimb = walkableClimb;
chf.maxRegions = 0;
vcopy(chf.bmin, hf.bmin);
vcopy(chf.bmax, hf.bmax);
chf.bmax[1] += walkableHeight*hf.ch;
chf.cs = hf.cs;
chf.ch = hf.ch;
chf.cells = new rcCompactCell[w*h];
if (!chf.cells)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
return false;
}
memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
chf.spans = new rcCompactSpan[spanCount];
if (!chf.spans)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
return false;
}
memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
const int MAX_HEIGHT = 0xffff;
// Fill in cells and spans.
int idx = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcSpan* s = hf.spans[x + y*w];
// If there are no spans at this cell, just leave the data to index=0, count=0.
if (!s) continue;
rcCompactCell& c = chf.cells[x+y*w];
c.index = idx;
c.count = 0;
while (s)
{
if (s->flags == flags)
{
const int bot = (int)s->smax;
const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
idx++;
c.count++;
}
s = s->next;
}
}
}
// Find neighbour connections.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
rcCompactSpan& s = chf.spans[i];
for (int dir = 0; dir < 4; ++dir)
{
setCon(s, dir, 0xf);
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
// First check that the neighbour cell is in bounds.
if (nx < 0 || ny < 0 || nx >= w || ny >= h)
continue;
// Iterate over all neighbour spans and check if any of the is
// accessible from current cell.
const rcCompactCell& nc = chf.cells[nx+ny*w];
for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
{
const rcCompactSpan& ns = chf.spans[k];
const int bot = rcMax(s.y, ns.y);
const int top = rcMin(s.y+s.h, ns.y+ns.h);
// Check that the gap between the spans is walkable,
// and that the climb height between the gaps is not too high.
if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
{
// Mark direction as walkable.
setCon(s, dir, k - (int)nc.index);
break;
}
}
}
}
}
}
rcTimeVal endTime = rcGetPerformanceTimer();
if (rcGetBuildTimes())
rcGetBuildTimes()->buildCompact += rcGetDeltaTimeUsec(startTime, endTime);
return true;
}
static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
{
int size = 0;
size += sizeof(hf);
size += hf.width * hf.height * sizeof(rcSpan*);
rcSpanPool* pool = hf.pools;
while (pool)
{
size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
pool = pool->next;
}
return size;
}
static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
{
int size = 0;
size += sizeof(rcCompactHeightfield);
size += sizeof(rcCompactSpan) * chf.spanCount;
size += sizeof(rcCompactCell) * chf.width * chf.height;
return size;
}