blender/source/gameengine/Ketsji/BL_Shader.cpp
Dalai Felinto 6b9ab1f7a2 Unifying access to GLEW from the Blender Game Engine
Note: This is not about functionality, but about using the same stub file
we are using in Blender for the game engine in blender2.8.
2017-05-11 16:08:03 +02:00

1479 lines
32 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Ketsji/BL_Shader.cpp
* \ingroup ketsji
*/
#include "GPU_glew.h"
#include <iostream>
#include "BL_Shader.h"
#include "BL_Material.h"
#include "MT_assert.h"
#include "MT_Matrix4x4.h"
#include "MT_Matrix3x3.h"
#include "KX_PyMath.h"
#include "KX_PythonInit.h"
#include "MEM_guardedalloc.h"
#include "RAS_MeshObject.h"
#include "RAS_IRasterizer.h"
#define spit(x) std::cout << x << std::endl;
#define SORT_UNIFORMS 1
#define UNIFORM_MAX_LEN (int)sizeof(float) * 16
#define MAX_LOG_LEN 262144 // bounds
BL_Uniform::BL_Uniform(int data_size)
:
mLoc(-1),
mDirty(true),
mType(UNI_NONE),
mTranspose(0),
mDataLen(data_size)
{
#ifdef SORT_UNIFORMS
MT_assert((int)mDataLen <= UNIFORM_MAX_LEN);
mData = (void *)MEM_mallocN(mDataLen, "shader-uniform-alloc");
#endif
}
BL_Uniform::~BL_Uniform()
{
#ifdef SORT_UNIFORMS
if (mData) {
MEM_freeN(mData);
mData = NULL;
}
#endif
}
bool BL_Uniform::Apply(class BL_Shader *shader)
{
#ifdef SORT_UNIFORMS
RAS_IRasterizer *ras;
MT_assert(mType > UNI_NONE && mType < UNI_MAX && mData);
if (!mDirty)
return false;
mDirty = false;
switch (mType) {
case UNI_FLOAT:
{
float *f = (float *)mData;
glUniform1fARB(mLoc, (GLfloat)*f);
break;
}
case UNI_FLOAT_EYE:
{
float *f = (float*)mData;
ras = KX_GetActiveEngine()->GetRasterizer();
*f = (ras->GetEye() == RAS_IRasterizer::RAS_STEREO_LEFTEYE) ? 0.0f : 0.5f;
glUniform1fARB(mLoc, (GLfloat)*f);
mDirty = (ras->Stereo()) ? true : false;
break;
}
case UNI_INT:
{
int *f = (int *)mData;
glUniform1iARB(mLoc, (GLint)*f);
break;
}
case UNI_FLOAT2:
{
float *f = (float *)mData;
glUniform2fvARB(mLoc, 1, (GLfloat *)f);
break;
}
case UNI_FLOAT3:
{
float *f = (float *)mData;
glUniform3fvARB(mLoc, 1, (GLfloat *)f);
break;
}
case UNI_FLOAT4:
{
float *f = (float *)mData;
glUniform4fvARB(mLoc, 1, (GLfloat *)f);
break;
}
case UNI_INT2:
{
int *f = (int *)mData;
glUniform2ivARB(mLoc, 1, (GLint *)f);
break;
}
case UNI_INT3:
{
int *f = (int *)mData;
glUniform3ivARB(mLoc, 1, (GLint *)f);
break;
}
case UNI_INT4:
{
int *f = (int *)mData;
glUniform4ivARB(mLoc, 1, (GLint *)f);
break;
}
case UNI_MAT4:
{
float *f = (float *)mData;
glUniformMatrix4fvARB(mLoc, 1, mTranspose ? GL_TRUE : GL_FALSE, (GLfloat *)f);
break;
}
case UNI_MAT3:
{
float *f = (float *)mData;
glUniformMatrix3fvARB(mLoc, 1, mTranspose ? GL_TRUE : GL_FALSE, (GLfloat *)f);
break;
}
}
return mDirty;
#endif
}
void BL_Uniform::SetData(int location, int type, bool transpose)
{
#ifdef SORT_UNIFORMS
mType = type;
mLoc = location;
mDirty = true;
#endif
}
bool BL_Shader::Ok()const
{
return (mShader != 0 && mOk && mUse);
}
BL_Shader::BL_Shader()
:
PyObjectPlus(),
mShader(0),
mPass(1),
mOk(0),
mUse(0),
mAttr(0),
vertProg(NULL),
fragProg(NULL),
mError(0),
mDirty(true)
{
// if !GLEW_ARB_shader_objects this class will not be used
//for (int i=0; i<MAXTEX; i++) {
// mSampler[i] = BL_Sampler();
//}
}
BL_Shader::~BL_Shader()
{
//for (int i=0; i<MAXTEX; i++) {
// if (mSampler[i].mOwn) {
// if (mSampler[i].mTexture)
// mSampler[i].mTexture->DeleteTex();
// }
//}
ClearUniforms();
if (mShader) {
glDeleteObjectARB(mShader);
mShader = 0;
}
vertProg = NULL;
fragProg = NULL;
mOk = 0;
glUseProgramObjectARB(0);
}
void BL_Shader::ClearUniforms()
{
BL_UniformVec::iterator it = mUniforms.begin();
while (it != mUniforms.end()) {
delete *it;
it++;
}
mUniforms.clear();
BL_UniformVecDef::iterator itp = mPreDef.begin();
while (itp != mPreDef.end()) {
delete *itp;
itp++;
}
mPreDef.clear();
}
BL_Uniform *BL_Shader::FindUniform(const int location)
{
#ifdef SORT_UNIFORMS
BL_UniformVec::iterator it = mUniforms.begin();
while (it != mUniforms.end()) {
if ((*it)->GetLocation() == location) {
return *it;
}
it++;
}
#endif
return NULL;
}
void BL_Shader::SetUniformfv(int location, int type, float *param, int size, bool transpose)
{
#ifdef SORT_UNIFORMS
BL_Uniform *uni = FindUniform(location);
if (uni) {
memcpy(uni->getData(), param, size);
uni->SetData(location, type, transpose);
}
else {
uni = new BL_Uniform(size);
memcpy(uni->getData(), param, size);
uni->SetData(location, type, transpose);
mUniforms.push_back(uni);
}
mDirty = true;
#endif
}
void BL_Shader::SetUniformiv(int location, int type, int *param, int size, bool transpose)
{
#ifdef SORT_UNIFORMS
BL_Uniform *uni = FindUniform(location);
if (uni) {
memcpy(uni->getData(), param, size);
uni->SetData(location, type, transpose);
}
else {
uni = new BL_Uniform(size);
memcpy(uni->getData(), param, size);
uni->SetData(location, type, transpose);
mUniforms.push_back(uni);
}
mDirty = true;
#endif
}
void BL_Shader::ApplyShader()
{
#ifdef SORT_UNIFORMS
if (!mDirty) {
return;
}
mDirty = false;
for (unsigned int i=0; i<mUniforms.size(); i++) {
mDirty |= mUniforms[i]->Apply(this);
}
#endif
}
void BL_Shader::UnloadShader()
{
//
}
bool BL_Shader::LinkProgram()
{
int vertlen = 0, fraglen = 0, proglen = 0;
int vertstatus = 0, fragstatus = 0, progstatus = 0;
unsigned int tmpVert = 0, tmpFrag = 0, tmpProg = 0;
int char_len = 0;
char *logInf = NULL;
if (mError) {
goto programError;
}
if (!vertProg || !fragProg) {
spit("Invalid GLSL sources");
return false;
}
if (!GLEW_ARB_fragment_shader) {
spit("Fragment shaders not supported");
return false;
}
if (!GLEW_ARB_vertex_shader) {
spit("Vertex shaders not supported");
return false;
}
if (vertProg[0] != 0) {
// -- vertex shader ------------------
tmpVert = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
glShaderSourceARB(tmpVert, 1, (const char**)&vertProg, 0);
glCompileShaderARB(tmpVert);
glGetObjectParameterivARB(tmpVert, GL_OBJECT_INFO_LOG_LENGTH_ARB, (GLint*)&vertlen);
// print info if any
if (vertlen > 0 && vertlen < MAX_LOG_LEN) {
logInf = (char*)MEM_mallocN(vertlen, "vert-log");
glGetInfoLogARB(tmpVert, vertlen, (GLsizei*)&char_len, logInf);
if (char_len > 0) {
spit("---- Vertex Shader Error ----");
spit(logInf);
}
MEM_freeN(logInf);
logInf = 0;
}
// check for compile errors
glGetObjectParameterivARB(tmpVert, GL_OBJECT_COMPILE_STATUS_ARB, (GLint*)&vertstatus);
if (!vertstatus) {
spit("---- Vertex shader failed to compile ----");
goto programError;
}
}
if (fragProg[0] != 0) {
// -- fragment shader ----------------
tmpFrag = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
glShaderSourceARB(tmpFrag, 1, (const char**)&fragProg, 0);
glCompileShaderARB(tmpFrag);
glGetObjectParameterivARB(tmpFrag, GL_OBJECT_INFO_LOG_LENGTH_ARB, (GLint*)&fraglen);
if (fraglen > 0 && fraglen < MAX_LOG_LEN) {
logInf = (char*)MEM_mallocN(fraglen, "frag-log");
glGetInfoLogARB(tmpFrag, fraglen, (GLsizei*)&char_len, logInf);
if (char_len > 0) {
spit("---- Fragment Shader Error ----");
spit(logInf);
}
MEM_freeN(logInf);
logInf = 0;
}
glGetObjectParameterivARB(tmpFrag, GL_OBJECT_COMPILE_STATUS_ARB, (GLint*)&fragstatus);
if (!fragstatus) {
spit("---- Fragment shader failed to compile ----");
goto programError;
}
}
if (!tmpFrag && !tmpVert) {
spit("---- No shader given ----");
goto programError;
}
// -- program ------------------------
// set compiled vert/frag shader & link
tmpProg = glCreateProgramObjectARB();
if (tmpVert) {
glAttachObjectARB(tmpProg, tmpVert);
}
if (tmpFrag) {
glAttachObjectARB(tmpProg, tmpFrag);
}
glLinkProgramARB(tmpProg);
glGetObjectParameterivARB(tmpProg, GL_OBJECT_INFO_LOG_LENGTH_ARB, (GLint *)&proglen);
glGetObjectParameterivARB(tmpProg, GL_OBJECT_LINK_STATUS_ARB, (GLint *)&progstatus);
if (proglen > 0 && proglen < MAX_LOG_LEN) {
logInf = (char *)MEM_mallocN(proglen, "prog-log");
glGetInfoLogARB(tmpProg, proglen, (GLsizei *)&char_len, logInf);
if (char_len > 0) {
spit("---- GLSL Program ----");
spit(logInf);
}
MEM_freeN(logInf);
logInf = 0;
}
if (!progstatus) {
spit("---- GLSL program failed to link ----");
goto programError;
}
// set
mShader = tmpProg;
if (tmpVert) {
glDeleteObjectARB(tmpVert);
}
if (tmpFrag) {
glDeleteObjectARB(tmpFrag);
}
mOk = 1;
mError = 0;
return true;
programError:
if (tmpVert) {
glDeleteObjectARB(tmpVert);
tmpVert = 0;
}
if (tmpFrag) {
glDeleteObjectARB(tmpFrag);
tmpFrag = 0;
}
if (tmpProg) {
glDeleteObjectARB(tmpProg);
tmpProg = 0;
}
mOk = 0;
mUse = 0;
mError = 1;
return false;
}
const char *BL_Shader::GetVertPtr()
{
return vertProg ? vertProg : NULL;
}
const char *BL_Shader::GetFragPtr()
{
return fragProg ? fragProg : NULL;
}
void BL_Shader::SetVertPtr(char *vert)
{
vertProg = vert;
}
void BL_Shader::SetFragPtr(char *frag)
{
fragProg = frag;
}
unsigned int BL_Shader::GetProg()
{
return mShader;
}
//const BL_Sampler *BL_Shader::GetSampler(int i)
//{
// MT_assert(i<=MAXTEX);
// return &mSampler[i];
//}
void BL_Shader::SetSampler(int loc, int unit)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
glUniform1iARB(loc, unit);
}
}
//void BL_Shader::InitializeSampler(int unit, BL_Texture *texture)
//{
// MT_assert(unit <= MAXTEX);
// mSampler[unit].mTexture = texture;
// mSampler[unit].mLoc = -1;
// mSampler[unit].mOwn = 0;
//}
void BL_Shader::SetProg(bool enable)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
if (mShader != 0 && mOk && enable) {
glUseProgramObjectARB(mShader);
}
else {
glUseProgramObjectARB(0);
}
}
}
void BL_Shader::Update(const RAS_MeshSlot &ms, RAS_IRasterizer *rasty)
{
if (!Ok() || !mPreDef.size()) {
return;
}
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
MT_Matrix4x4 model;
model.setValue(ms.m_OpenGLMatrix);
const MT_Matrix4x4 &view = rasty->GetViewMatrix();
if (mAttr == SHD_TANGENT) {
ms.m_mesh->SetMeshModified(true);
}
BL_UniformVecDef::iterator it;
for (it = mPreDef.begin(); it != mPreDef.end(); it++) {
BL_DefUniform *uni = (*it);
if (uni->mLoc == -1) {
continue;
}
switch (uni->mType) {
case MODELMATRIX:
{
SetUniform(uni->mLoc, model);
break;
}
case MODELMATRIX_TRANSPOSE:
{
SetUniform(uni->mLoc, model, true);
break;
}
case MODELMATRIX_INVERSE:
{
model.invert();
SetUniform(uni->mLoc, model);
break;
}
case MODELMATRIX_INVERSETRANSPOSE:
{
model.invert();
SetUniform(uni->mLoc, model, true);
break;
}
case MODELVIEWMATRIX:
{
SetUniform(uni->mLoc, view * model);
break;
}
case MODELVIEWMATRIX_TRANSPOSE:
{
MT_Matrix4x4 mat(view * model);
SetUniform(uni->mLoc, mat, true);
break;
}
case MODELVIEWMATRIX_INVERSE:
{
MT_Matrix4x4 mat(view * model);
mat.invert();
SetUniform(uni->mLoc, mat);
break;
}
case MODELVIEWMATRIX_INVERSETRANSPOSE:
{
MT_Matrix4x4 mat(view * model);
mat.invert();
SetUniform(uni->mLoc, mat, true);
break;
}
case CAM_POS:
{
MT_Point3 pos(rasty->GetCameraPosition());
SetUniform(uni->mLoc, pos);
break;
}
case VIEWMATRIX:
{
SetUniform(uni->mLoc, view);
break;
}
case VIEWMATRIX_TRANSPOSE:
{
SetUniform(uni->mLoc, view, true);
break;
}
case VIEWMATRIX_INVERSE:
{
MT_Matrix4x4 viewinv = view;
viewinv.invert();
SetUniform(uni->mLoc, view);
break;
}
case VIEWMATRIX_INVERSETRANSPOSE:
{
MT_Matrix4x4 viewinv = view;
viewinv.invert();
SetUniform(uni->mLoc, view, true);
break;
}
case CONSTANT_TIMER:
{
SetUniform(uni->mLoc, (float)rasty->GetTime());
break;
}
default:
break;
}
}
}
}
int BL_Shader::GetAttribLocation(const char *name)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
return glGetAttribLocationARB(mShader, name);
}
return -1;
}
void BL_Shader::BindAttribute(const char *attr, int loc)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
glBindAttribLocationARB(mShader, loc, attr);
}
}
int BL_Shader::GetUniformLocation(const char *name)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
MT_assert(mShader != 0);
int location = glGetUniformLocationARB(mShader, name);
if (location == -1) {
spit("Invalid uniform value: " << name << ".");
}
return location;
}
return -1;
}
void BL_Shader::SetUniform(int uniform, const MT_Tuple2 &vec)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
float value[2];
vec.getValue(value);
glUniform2fvARB(uniform, 1, value);
}
}
void BL_Shader::SetUniform(int uniform, const MT_Tuple3 &vec)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
float value[3];
vec.getValue(value);
glUniform3fvARB(uniform, 1, value);
}
}
void BL_Shader::SetUniform(int uniform, const MT_Tuple4 &vec)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
float value[4];
vec.getValue(value);
glUniform4fvARB(uniform, 1, value);
}
}
void BL_Shader::SetUniform(int uniform, const unsigned int &val)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
glUniform1iARB(uniform, val);
}
}
void BL_Shader::SetUniform(int uniform, const int val)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
glUniform1iARB(uniform, val);
}
}
void BL_Shader::SetUniform(int uniform, const float &val)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
glUniform1fARB(uniform, val);
}
}
void BL_Shader::SetUniform(int uniform, const MT_Matrix4x4 &vec, bool transpose)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
float value[16];
// note: getValue gives back column major as needed by OpenGL
vec.getValue(value);
glUniformMatrix4fvARB(uniform, 1, transpose ? GL_TRUE : GL_FALSE, value);
}
}
void BL_Shader::SetUniform(int uniform, const MT_Matrix3x3 &vec, bool transpose)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
float value[9];
value[0] = (float)vec[0][0];
value[1] = (float)vec[1][0];
value[2] = (float)vec[2][0];
value[3] = (float)vec[0][1];
value[4] = (float)vec[1][1];
value[5] = (float)vec[2][1];
value[6] = (float)vec[0][2];
value[7] = (float)vec[1][2];
value[8] = (float)vec[2][2];
glUniformMatrix3fvARB(uniform, 1, transpose ? GL_TRUE : GL_FALSE, value);
}
}
void BL_Shader::SetUniform(int uniform, const float *val, int len)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
if (len == 2) {
glUniform2fvARB(uniform, 1, (GLfloat *)val);
}
else if (len == 3) {
glUniform3fvARB(uniform, 1, (GLfloat *)val);
}
else if (len == 4) {
glUniform4fvARB(uniform, 1, (GLfloat *)val);
}
else {
MT_assert(0);
}
}
}
void BL_Shader::SetUniform(int uniform, const int *val, int len)
{
if (GLEW_ARB_fragment_shader && GLEW_ARB_vertex_shader && GLEW_ARB_shader_objects) {
if (len == 2) {
glUniform2ivARB(uniform, 1, (GLint *)val);
}
else if (len == 3) {
glUniform3ivARB(uniform, 1, (GLint *)val);
}
else if (len == 4) {
glUniform4ivARB(uniform, 1, (GLint *)val);
}
else {
MT_assert(0);
}
}
}
#ifdef WITH_PYTHON
PyMethodDef BL_Shader::Methods[] = {
// creation
KX_PYMETHODTABLE(BL_Shader, setSource),
KX_PYMETHODTABLE(BL_Shader, delSource),
KX_PYMETHODTABLE(BL_Shader, getVertexProg),
KX_PYMETHODTABLE(BL_Shader, getFragmentProg),
KX_PYMETHODTABLE(BL_Shader, setNumberOfPasses),
KX_PYMETHODTABLE(BL_Shader, validate),
// access functions
KX_PYMETHODTABLE(BL_Shader, isValid),
KX_PYMETHODTABLE(BL_Shader, setUniformEyef),
KX_PYMETHODTABLE(BL_Shader, setUniform1f),
KX_PYMETHODTABLE(BL_Shader, setUniform2f),
KX_PYMETHODTABLE(BL_Shader, setUniform3f),
KX_PYMETHODTABLE(BL_Shader, setUniform4f),
KX_PYMETHODTABLE(BL_Shader, setUniform1i),
KX_PYMETHODTABLE(BL_Shader, setUniform2i),
KX_PYMETHODTABLE(BL_Shader, setUniform3i),
KX_PYMETHODTABLE(BL_Shader, setUniform4i),
KX_PYMETHODTABLE(BL_Shader, setAttrib),
KX_PYMETHODTABLE(BL_Shader, setUniformfv),
KX_PYMETHODTABLE(BL_Shader, setUniformiv),
KX_PYMETHODTABLE(BL_Shader, setUniformDef),
KX_PYMETHODTABLE(BL_Shader, setSampler),
KX_PYMETHODTABLE(BL_Shader, setUniformMatrix4),
KX_PYMETHODTABLE(BL_Shader, setUniformMatrix3),
{NULL, NULL} //Sentinel
};
PyAttributeDef BL_Shader::Attributes[] = {
{NULL} //Sentinel
};
PyTypeObject BL_Shader::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"BL_Shader",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0, 0, 0, 0, 0, 0, 0, 0, 0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0, 0, 0, 0, 0, 0, 0,
Methods,
0,
0,
&PyObjectPlus::Type,
0, 0, 0, 0, 0, 0,
py_base_new
};
KX_PYMETHODDEF_DOC(BL_Shader, setSource, " setSource(vertexProgram, fragmentProgram)")
{
if (mShader != 0 && mOk) {
// already set...
Py_RETURN_NONE;
}
char *v, *f;
int apply = 0;
if (PyArg_ParseTuple(args, "ssi:setSource", &v, &f, &apply)) {
vertProg = v;
fragProg = f;
if (LinkProgram()) {
glUseProgramObjectARB(mShader);
mUse = apply != 0;
Py_RETURN_NONE;
}
vertProg = NULL;
fragProg = NULL;
mUse = 0;
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, delSource, "delSource( )")
{
ClearUniforms();
glUseProgramObjectARB(0);
glDeleteObjectARB(mShader);
mShader = 0;
mOk = 0;
mUse = 0;
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(BL_Shader, isValid, "isValid()")
{
return PyBool_FromLong((mShader != 0 && mOk));
}
KX_PYMETHODDEF_DOC(BL_Shader, getVertexProg, "getVertexProg( )")
{
return PyUnicode_FromString(vertProg ? vertProg : "");
}
KX_PYMETHODDEF_DOC(BL_Shader, getFragmentProg, "getFragmentProg( )")
{
return PyUnicode_FromString(fragProg ? fragProg : "");
}
KX_PYMETHODDEF_DOC(BL_Shader, validate, "validate()")
{
if (mError) {
Py_RETURN_NONE;
}
if (mShader == 0) {
PyErr_SetString(PyExc_TypeError, "shader.validate(): BL_Shader, invalid shader object");
return NULL;
}
int stat = 0;
glValidateProgramARB(mShader);
glGetObjectParameterivARB(mShader, GL_OBJECT_VALIDATE_STATUS_ARB, (GLint *)&stat);
if (stat > 0 && stat < MAX_LOG_LEN) {
int char_len = 0;
char *logInf = (char *)MEM_mallocN(stat, "validate-log");
glGetInfoLogARB(mShader, stat, (GLsizei *)&char_len, logInf);
if (char_len > 0) {
spit("---- GLSL Validation ----");
spit(logInf);
}
MEM_freeN(logInf);
logInf = NULL;
}
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(BL_Shader, setSampler, "setSampler(name, index)")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
int index = -1;
if (PyArg_ParseTuple(args, "si:setSampler", &uniform, &index)) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
if (index >= MAXTEX || index < 0) {
spit("Invalid texture sample index: " << index);
}
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT, &index, (sizeof(int)));
#else
SetUniform(loc, index);
#endif
//if (index <= MAXTEX)
// mSampler[index].mLoc = loc;
//else
// spit("Invalid texture sample index: " << index);
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setNumberOfPasses, "setNumberOfPasses( max-pass )")
{
int pass = 1;
if (!PyArg_ParseTuple(args, "i:setNumberOfPasses", &pass)) {
return NULL;
}
mPass = 1;
Py_RETURN_NONE;
}
/// access functions
KX_PYMETHODDEF_DOC(BL_Shader, setUniform1f, "setUniform1f(name, fx)")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
float value = 0.0f;
if (PyArg_ParseTuple(args, "sf:setUniform1f", &uniform, &value)) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT, &value, sizeof(float));
#else
SetUniform(loc, (float)value);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniform2f, "setUniform2f(name, fx, fy)")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
float array[2] = {0.0f, 0.0f};
if (PyArg_ParseTuple(args, "sff:setUniform2f", &uniform, &array[0], &array[1])) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT2, array, (sizeof(float) * 2));
#else
SetUniform(loc, array, 2);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniform3f, "setUniform3f(name, fx,fy,fz) ")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
float array[3] = {0.0f, 0.0f, 0.0f};
if (PyArg_ParseTuple(args, "sfff:setUniform3f", &uniform, &array[0], &array[1], &array[2])) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT3, array, (sizeof(float) * 3));
#else
SetUniform(loc, array, 3);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniform4f, "setUniform4f(name, fx,fy,fz, fw) ")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
float array[4] = {0.0f, 0.0f, 0.0f, 0.0f};
if (PyArg_ParseTuple(args, "sffff:setUniform4f", &uniform, &array[0], &array[1], &array[2], &array[3])) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT4, array, (sizeof(float) * 4));
#else
SetUniform(loc, array, 4);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniformEyef, "setUniformEyef(name)")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
float value = 0.0f;
if (PyArg_ParseTuple(args, "s:setUniformEyef", &uniform)) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT_EYE, &value, sizeof(float));
#else
SetUniform(loc, (int)value);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniform1i, "setUniform1i(name, ix)")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
int value = 0;
if (PyArg_ParseTuple(args, "si:setUniform1i", &uniform, &value)) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT, &value, sizeof(int));
#else
SetUniform(loc, (int)value);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniform2i, "setUniform2i(name, ix, iy)")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
int array[2] = {0, 0};
if (PyArg_ParseTuple(args, "sii:setUniform2i", &uniform, &array[0], &array[1])) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT2, array, sizeof(int) * 2);
#else
SetUniform(loc, array, 2);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniform3i, "setUniform3i(name, ix,iy,iz) ")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
int array[3] = {0, 0, 0};
if (PyArg_ParseTuple(args, "siii:setUniform3i", &uniform, &array[0], &array[1], &array[2])) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT3, array, sizeof(int) * 3);
#else
SetUniform(loc, array, 3);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniform4i, "setUniform4i(name, ix,iy,iz, iw) ")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
int array[4] = {0, 0, 0, 0};
if (PyArg_ParseTuple(args, "siiii:setUniform4i", &uniform, &array[0], &array[1], &array[2], &array[3])) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT4, array, sizeof(int) * 4);
#else
SetUniform(loc, array, 4);
#endif
}
Py_RETURN_NONE;
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniformfv, "setUniformfv(float (list2 or list3 or list4))")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform = "";
PyObject *listPtr = NULL;
float array_data[4] = {0.0f, 0.0f, 0.0f, 0.0f};
if (PyArg_ParseTuple(args, "sO:setUniformfv", &uniform, &listPtr)) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
if (PySequence_Check(listPtr)) {
unsigned int list_size = PySequence_Size(listPtr);
for (unsigned int i = 0; (i < list_size && i < 4); i++) {
PyObject *item = PySequence_GetItem(listPtr, i);
array_data[i] = (float)PyFloat_AsDouble(item);
Py_DECREF(item);
}
switch (list_size) {
case 2:
{
float array2[2] = {array_data[0], array_data[1]};
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT2, array2, sizeof(float) * 2);
#else
SetUniform(loc, array2, 2);
#endif
Py_RETURN_NONE;
break;
}
case 3:
{
float array3[3] = {array_data[0], array_data[1], array_data[2]};
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT3, array3, sizeof(float) * 3);
#else
SetUniform(loc, array3, 3);
#endif
Py_RETURN_NONE;
break;
}
case 4:
{
float array4[4] = {array_data[0], array_data[1], array_data[2], array_data[3]};
#ifdef SORT_UNIFORMS
SetUniformfv(loc, BL_Uniform::UNI_FLOAT4, array4, sizeof(float) * 4);
#else
SetUniform(loc, array4, 4);
#endif
Py_RETURN_NONE;
break;
}
default:
{
PyErr_SetString(PyExc_TypeError,
"shader.setUniform4i(name, ix,iy,iz, iw): BL_Shader. invalid list size");
return NULL;
break;
}
}
}
}
}
return NULL;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniformiv, "setUniformiv(uniform_name, (list2 or list3 or list4))")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform = "";
PyObject *listPtr = NULL;
int array_data[4] = {0, 0, 0, 0};
if (!PyArg_ParseTuple(args, "sO:setUniformiv", &uniform, &listPtr)) {
return NULL;
}
int loc = GetUniformLocation(uniform);
if (loc == -1) {
PyErr_SetString(PyExc_TypeError,
"shader.setUniformiv(...): BL_Shader, first string argument is not a valid uniform value");
return NULL;
}
if (!PySequence_Check(listPtr)) {
PyErr_SetString(PyExc_TypeError, "shader.setUniformiv(...): BL_Shader, second argument is not a sequence");
return NULL;
}
unsigned int list_size = PySequence_Size(listPtr);
for (unsigned int i = 0; (i < list_size && i < 4); i++) {
PyObject *item = PySequence_GetItem(listPtr, i);
array_data[i] = PyLong_AsLong(item);
Py_DECREF(item);
}
if (PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError,
"shader.setUniformiv(...): BL_Shader, one or more values in the list is not an int");
return NULL;
}
// Sanity checks done!
switch (list_size) {
case 2:
{
int array2[2] = {array_data[0], array_data[1]};
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT2, array2, sizeof(int) * 2);
#else
SetUniform(loc, array2, 2);
#endif
Py_RETURN_NONE;
break;
}
case 3:
{
int array3[3] = {array_data[0], array_data[1], array_data[2]};
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT3, array3, sizeof(int) * 3);
#else
SetUniform(loc, array3, 3);
#endif
Py_RETURN_NONE;
break;
}
case 4:
{
int array4[4] = {array_data[0], array_data[1], array_data[2], array_data[3]};
#ifdef SORT_UNIFORMS
SetUniformiv(loc, BL_Uniform::UNI_INT4, array4, sizeof(int) * 4);
#else
SetUniform(loc, array4, 4);
#endif
Py_RETURN_NONE;
break;
}
default:
{
PyErr_SetString(PyExc_TypeError,
"shader.setUniformiv(...): BL_Shader, second argument, invalid list size, expected an int "
"list between 2 and 4");
return NULL;
break;
}
}
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniformMatrix4,
"setUniformMatrix4(uniform_name, mat-4x4, transpose(row-major=true, col-major=false)")
{
if (mError) {
Py_RETURN_NONE;
}
float matr[16] = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
const char *uniform;
PyObject *matrix = NULL;
int transp = 0; // python use column major by default, so no transpose....
if (!PyArg_ParseTuple(args, "sO|i:setUniformMatrix4", &uniform, &matrix, &transp)) {
return NULL;
}
int loc = GetUniformLocation(uniform);
if (loc == -1) {
PyErr_SetString(PyExc_TypeError,
"shader.setUniformMatrix4(...): BL_Shader, first string argument is not a valid uniform value");
return NULL;
}
MT_Matrix4x4 mat;
if (!PyMatTo(matrix, mat)) {
PyErr_SetString(PyExc_TypeError,
"shader.setUniformMatrix4(...): BL_Shader, second argument cannot be converted into a 4x4 matrix");
return NULL;
}
// Sanity checks done!
#ifdef SORT_UNIFORMS
mat.getValue(matr);
SetUniformfv(loc, BL_Uniform::UNI_MAT4, matr, (sizeof(float) * 16), (transp != 0));
#else
SetUniform(loc, mat, (transp != 0));
#endif
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniformMatrix3,
"setUniformMatrix3(uniform_name, list[3x3], transpose(row-major=true, col-major=false)")
{
if (mError) {
Py_RETURN_NONE;
}
float matr[9] = {
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f,
};
const char *uniform;
PyObject *matrix = NULL;
int transp = 0; // python use column major by default, so no transpose....
if (!PyArg_ParseTuple(args, "sO|i:setUniformMatrix3", &uniform, &matrix, &transp)) {
return NULL;
}
int loc = GetUniformLocation(uniform);
if (loc == -1) {
PyErr_SetString(PyExc_TypeError,
"shader.setUniformMatrix3(...): BL_Shader, first string argument is not a valid uniform value");
return NULL;
}
MT_Matrix3x3 mat;
if (!PyMatTo(matrix, mat)) {
PyErr_SetString(PyExc_TypeError,
"shader.setUniformMatrix3(...): BL_Shader, second argument cannot be converted into a 3x3 matrix");
return NULL;
}
#ifdef SORT_UNIFORMS
mat.getValue3x3(matr);
SetUniformfv(loc, BL_Uniform::UNI_MAT3, matr, (sizeof(float) * 9), (transp != 0));
#else
SetUniform(loc, mat, (transp != 0));
#endif
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(BL_Shader, setAttrib, "setAttrib(enum)")
{
if (mError) {
Py_RETURN_NONE;
}
int attr = 0;
if (!PyArg_ParseTuple(args, "i:setAttrib", &attr)) {
return NULL;
}
attr = SHD_TANGENT; // user input is ignored for now, there is only 1 attr
if (mShader == 0) {
PyErr_SetString(PyExc_ValueError, "shader.setAttrib() BL_Shader, invalid shader object");
return NULL;
}
mAttr = attr;
glUseProgramObjectARB(mShader);
glBindAttribLocationARB(mShader, mAttr, "Tangent");
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(BL_Shader, setUniformDef, "setUniformDef(name, enum)")
{
if (mError) {
Py_RETURN_NONE;
}
const char *uniform;
int nloc = 0;
if (PyArg_ParseTuple(args, "si:setUniformDef", &uniform, &nloc)) {
int loc = GetUniformLocation(uniform);
if (loc != -1) {
bool defined = false;
BL_UniformVecDef::iterator it = mPreDef.begin();
while (it != mPreDef.end()) {
if ((*it)->mLoc == loc) {
defined = true;
break;
}
it++;
}
if (defined) {
Py_RETURN_NONE;
}
BL_DefUniform *uni = new BL_DefUniform();
uni->mLoc = loc;
uni->mType = nloc;
uni->mFlag = 0;
mPreDef.push_back(uni);
Py_RETURN_NONE;
}
}
return NULL;
}
#endif // WITH_PYTHON
// eof