blender/intern/cycles/util/util_math_float3.h
Lukas Stockner cc600de669 Cycles Denoising: Get rid of halos around bright edges
Previously, bright edges (e.g. caused by rim lighting) would sometimes get
halos around them after denoising.

This change introduces a log(1+x) highlight compression step that is performed
before denoising and reversed afterwards. That way, the denoising algorithm
itself operates in the compressed space and therefore bright edges cause less
numerical issues.
2019-06-01 00:45:03 +02:00

432 lines
11 KiB
C

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_MATH_FLOAT3_H__
#define __UTIL_MATH_FLOAT3_H__
#ifndef __UTIL_MATH_H__
# error "Do not include this file directly, include util_types.h instead."
#endif
CCL_NAMESPACE_BEGIN
/*******************************************************************************
* Declaration.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float3 operator-(const float3 &a);
ccl_device_inline float3 operator*(const float3 &a, const float3 &b);
ccl_device_inline float3 operator*(const float3 &a, const float f);
ccl_device_inline float3 operator*(const float f, const float3 &a);
ccl_device_inline float3 operator/(const float f, const float3 &a);
ccl_device_inline float3 operator/(const float3 &a, const float f);
ccl_device_inline float3 operator/(const float3 &a, const float3 &b);
ccl_device_inline float3 operator+(const float3 &a, const float3 &b);
ccl_device_inline float3 operator-(const float3 &a, const float3 &b);
ccl_device_inline float3 operator+=(float3 &a, const float3 &b);
ccl_device_inline float3 operator-=(float3 &a, const float3 &b);
ccl_device_inline float3 operator*=(float3 &a, const float3 &b);
ccl_device_inline float3 operator*=(float3 &a, float f);
ccl_device_inline float3 operator/=(float3 &a, const float3 &b);
ccl_device_inline float3 operator/=(float3 &a, float f);
ccl_device_inline bool operator==(const float3 &a, const float3 &b);
ccl_device_inline bool operator!=(const float3 &a, const float3 &b);
ccl_device_inline float dot(const float3 &a, const float3 &b);
ccl_device_inline float dot_xy(const float3 &a, const float3 &b);
ccl_device_inline float3 cross(const float3 &a, const float3 &b);
ccl_device_inline float3 normalize(const float3 &a);
ccl_device_inline float3 min(const float3 &a, const float3 &b);
ccl_device_inline float3 max(const float3 &a, const float3 &b);
ccl_device_inline float3 clamp(const float3 &a, const float3 &mn, const float3 &mx);
ccl_device_inline float3 fabs(const float3 &a);
ccl_device_inline float3 mix(const float3 &a, const float3 &b, float t);
ccl_device_inline float3 rcp(const float3 &a);
ccl_device_inline float3 sqrt(const float3 &a);
#endif /* !__KERNEL_OPENCL__ */
ccl_device_inline float min3(float3 a);
ccl_device_inline float max3(float3 a);
ccl_device_inline float len(const float3 a);
ccl_device_inline float len_squared(const float3 a);
ccl_device_inline float3 saturate3(float3 a);
ccl_device_inline float3 safe_normalize(const float3 a);
ccl_device_inline float3 normalize_len(const float3 a, float *t);
ccl_device_inline float3 safe_normalize_len(const float3 a, float *t);
ccl_device_inline float3 interp(float3 a, float3 b, float t);
ccl_device_inline float3 sqr3(float3 a);
ccl_device_inline bool is_zero(const float3 a);
ccl_device_inline float reduce_add(const float3 a);
ccl_device_inline float average(const float3 a);
ccl_device_inline bool isequal_float3(const float3 a, const float3 b);
/*******************************************************************************
* Definition.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float3 operator-(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))));
# else
return make_float3(-a.x, -a.y, -a.z);
# endif
}
ccl_device_inline float3 operator*(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, b.m128));
# else
return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
# endif
}
ccl_device_inline float3 operator*(const float3 &a, const float f)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, _mm_set1_ps(f)));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator*(const float f, const float3 &a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator/(const float f, const float3 &a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(f / a.x, f / a.y, f / a.z);
# endif
}
ccl_device_inline float3 operator/(const float3 &a, const float f)
{
float invf = 1.0f / f;
return a * invf;
}
ccl_device_inline float3 operator/(const float3 &a, const float3 &b)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, b.m128));
# else
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_add_ps(a.m128, b.m128));
# else
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
# endif
}
ccl_device_inline float3 operator-(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sub_ps(a.m128, b.m128));
# else
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
# endif
}
ccl_device_inline float3 operator+=(float3 &a, const float3 &b)
{
return a = a + b;
}
ccl_device_inline float3 operator-=(float3 &a, const float3 &b)
{
return a = a - b;
}
ccl_device_inline float3 operator*=(float3 &a, const float3 &b)
{
return a = a * b;
}
ccl_device_inline float3 operator*=(float3 &a, float f)
{
return a = a * f;
}
ccl_device_inline float3 operator/=(float3 &a, const float3 &b)
{
return a = a / b;
}
ccl_device_inline float3 operator/=(float3 &a, float f)
{
float invf = 1.0f / f;
return a = a * invf;
}
ccl_device_inline bool operator==(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7;
# else
return (a.x == b.x && a.y == b.y && a.z == b.z);
# endif
}
ccl_device_inline bool operator!=(const float3 &a, const float3 &b)
{
return !(a == b);
}
ccl_device_inline float dot(const float3 &a, const float3 &b)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F));
# else
return a.x * b.x + a.y * b.y + a.z * b.z;
# endif
}
ccl_device_inline float dot_xy(const float3 &a, const float3 &b)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a, b), b));
# else
return a.x * b.x + a.y * b.y;
# endif
}
ccl_device_inline float3 cross(const float3 &a, const float3 &b)
{
float3 r = make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
return r;
}
ccl_device_inline float3 normalize(const float3 &a)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
__m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F));
return float3(_mm_div_ps(a.m128, norm));
# else
return a / len(a);
# endif
}
ccl_device_inline float3 min(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_min_ps(a.m128, b.m128));
# else
return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
# endif
}
ccl_device_inline float3 max(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_max_ps(a.m128, b.m128));
# else
return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
# endif
}
ccl_device_inline float3 clamp(const float3 &a, const float3 &mn, const float3 &mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float3 fabs(const float3 &a)
{
# ifdef __KERNEL_SSE__
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
return float3(_mm_and_ps(a.m128, mask));
# else
return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z));
# endif
}
ccl_device_inline float3 sqrt(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sqrt_ps(a));
# else
return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));
# endif
}
ccl_device_inline float3 mix(const float3 &a, const float3 &b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 rcp(const float3 &a)
{
# ifdef __KERNEL_SSE__
/* Don't use _mm_rcp_ps due to poor precision. */
return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
# else
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
# endif
}
#endif /* !__KERNEL_OPENCL__ */
ccl_device_inline float min3(float3 a)
{
return min(min(a.x, a.y), a.z);
}
ccl_device_inline float max3(float3 a)
{
return max(max(a.x, a.y), a.z);
}
ccl_device_inline float len(const float3 a)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F)));
#else
return sqrtf(dot(a, a));
#endif
}
ccl_device_inline float len_squared(const float3 a)
{
return dot(a, a);
}
ccl_device_inline float3 saturate3(float3 a)
{
return make_float3(saturate(a.x), saturate(a.y), saturate(a.z));
}
ccl_device_inline float3 normalize_len(const float3 a, float *t)
{
*t = len(a);
float x = 1.0f / *t;
return a * x;
}
ccl_device_inline float3 safe_normalize(const float3 a)
{
float t = len(a);
return (t != 0.0f) ? a * (1.0f / t) : a;
}
ccl_device_inline float3 safe_normalize_len(const float3 a, float *t)
{
*t = len(a);
return (*t != 0.0f) ? a / (*t) : a;
}
ccl_device_inline float3 interp(float3 a, float3 b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 sqr3(float3 a)
{
return a * a;
}
ccl_device_inline bool is_zero(const float3 a)
{
#ifdef __KERNEL_SSE__
return a == make_float3(0.0f);
#else
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f);
#endif
}
ccl_device_inline float reduce_add(const float3 a)
{
return (a.x + a.y + a.z);
}
ccl_device_inline float average(const float3 a)
{
return reduce_add(a) * (1.0f / 3.0f);
}
ccl_device_inline bool isequal_float3(const float3 a, const float3 b)
{
#ifdef __KERNEL_OPENCL__
return all(a == b);
#else
return a == b;
#endif
}
ccl_device_inline float3 pow3(float3 v, float e)
{
return make_float3(powf(v.x, e), powf(v.y, e), powf(v.z, e));
}
ccl_device_inline float3 exp3(float3 v)
{
return make_float3(expf(v.x), expf(v.y), expf(v.z));
}
ccl_device_inline float3 log3(float3 v)
{
return make_float3(logf(v.x), logf(v.y), logf(v.z));
}
ccl_device_inline int3 quick_floor_to_int3(const float3 a)
{
#ifdef __KERNEL_SSE__
int3 b = int3(_mm_cvttps_epi32(a.m128));
int3 isneg = int3(_mm_castps_si128(_mm_cmplt_ps(a.m128, _mm_set_ps1(0.0f))));
/* Unsaturated add 0xffffffff is the same as subtract -1. */
return b + isneg;
#else
return make_int3(quick_floor_to_int(a.x), quick_floor_to_int(a.y), quick_floor_to_int(a.z));
#endif
}
ccl_device_inline bool isfinite3_safe(float3 v)
{
return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z);
}
ccl_device_inline float3 ensure_finite3(float3 v)
{
if (!isfinite_safe(v.x))
v.x = 0.0f;
if (!isfinite_safe(v.y))
v.y = 0.0f;
if (!isfinite_safe(v.z))
v.z = 0.0f;
return v;
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_FLOAT3_H__ */