blender/extern/carve/lib/intersect_classify_common_impl.hpp
Sergey Sharybin cba3498629 Update Carve to latest upstream version
This brings new copyright header which supports GPL2 and 3.

It wasn't really an issue before because we had agreement with
Tobias, but now it's all documented in sources.
2014-06-27 15:56:50 +06:00

363 lines
14 KiB
C++

// Begin License:
// Copyright (C) 2006-2014 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of either the GNU General
// Public License version 2 or 3 (at your option) as published by the
// Free Software Foundation and appearing in the files LICENSE.GPL2
// and LICENSE.GPL3 included in the packaging of this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#pragma once
namespace carve {
namespace csg {
typedef std::unordered_map<
carve::mesh::MeshSet<3>::vertex_t *,
std::list<FLGroupList::iterator> > GroupLookup;
inline bool isSameFwd(const V2Set &a, const V2Set &b) {
if (a.size() != b.size()) return false;
for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
if (b.find((*i)) == b.end()) return false;
}
return true;
}
inline bool isSameRev(const V2Set &a, const V2Set &b) {
if (a.size() != b.size()) return false;
for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
if (b.find(std::make_pair((*i).second, (*i).first)) == b.end()) return false;
}
return true;
}
static void performClassifySimpleOnFaceGroups(FLGroupList &a_groups,
FLGroupList &b_groups,
carve::mesh::MeshSet<3> *poly_a,
carve::mesh::MeshSet<3> *poly_b,
CSG::Collector &collector,
CSG::Hooks &hooks) {
// Simple ON faces groups are face groups that consist of a single
// face, and which have copy in both inputs. These are trivially ON.
// This has the side effect of short circuiting the case where the
// two inputs share geometry.
GroupLookup a_map, b_map;
// First, hash FaceLoopGroups with one FaceLoop based upon their
// minimum vertex pointer - this pointer must be shared between
// FaceLoops that this test catches.
for (FLGroupList::iterator i = a_groups.begin(); i != a_groups.end(); ++i) {
if ((*i).face_loops.size() != 1) continue;
FaceLoop *f = (*i).face_loops.head;
carve::mesh::MeshSet<3>::vertex_t *v = *std::min_element(f->vertices.begin(), f->vertices.end());
a_map[v].push_back(i);
}
for (FLGroupList::iterator i = b_groups.begin(); i != b_groups.end(); ++i) {
if ((*i).face_loops.size() != 1) continue;
FaceLoop *f = (*i).face_loops.head;
carve::mesh::MeshSet<3>::vertex_t *v = *std::min_element(f->vertices.begin(), f->vertices.end());
if (a_map.find(v) != a_map.end()) {
b_map[v].push_back(i);
}
}
// Then, iterate through the FaceLoops hashed in the first map, and
// find candidate matches in the second map.
for (GroupLookup::iterator j = b_map.begin(), je = b_map.end(); j != je; ++j) {
carve::mesh::MeshSet<3>::vertex_t *v = (*j).first;
GroupLookup::iterator i = a_map.find(v);
for (std::list<FLGroupList::iterator>::iterator bi = (*j).second.begin(), be = (*j).second.end(); bi != be;) {
FLGroupList::iterator b(*bi);
FaceLoop *f_b = (*b).face_loops.head;
// For each candidate match pair, see if their vertex pointers
// are the same, allowing for rotation and inversion.
for (std::list<FLGroupList::iterator>::iterator ai = (*i).second.begin(), ae = (*i).second.end(); ai != ae; ++ai) {
FLGroupList::iterator a(*ai);
FaceLoop *f_a = (*a).face_loops.head;
int s = is_same(f_a->vertices, f_b->vertices);
if (!s) continue;
// if they are ordered in the same direction, then they are
// oriented out, otherwise oriented in.
FaceClass fc = s == +1 ? FACE_ON_ORIENT_OUT : FACE_ON_ORIENT_IN;
(*a).classification.push_back(ClassificationInfo(NULL, fc));
(*b).classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&*a, hooks);
collector.collect(&*b, hooks);
a_groups.erase(a);
b_groups.erase(b);
(*i).second.erase(ai);
bi = (*j).second.erase(bi);
goto done;
}
++bi;
done:;
}
}
}
template <typename CLASSIFIER>
static void performClassifyEasyFaceGroups(FLGroupList &group,
carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
VertexClassification &vclass,
const CLASSIFIER &classifier,
CSG::Collector &collector,
CSG::Hooks &hooks) {
for (FLGroupList::iterator i = group.begin(); i != group.end();) {
#if defined(CARVE_DEBUG)
std::cerr << "............group " << &(*i) << std::endl;
#endif
FaceLoopGroup &grp = (*i);
FaceLoopList &curr = (grp.face_loops);
FaceClass fc;
for (FaceLoop *f = curr.head; f; f = f->next) {
for (size_t j = 0; j < f->vertices.size(); ++j) {
if (!classifier.pointOn(vclass, f, j)) {
PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, f->vertices[j]->v);
if (pc == POINT_IN || pc == POINT_OUT) {
classifier.explain(f, j, pc);
}
if (pc == POINT_IN) { fc = FACE_IN; goto accept; }
if (pc == POINT_OUT) { fc = FACE_OUT; goto accept; }
}
}
}
++i;
continue;
accept: {
grp.classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&grp, hooks);
i = group.erase(i);
}
}
}
template <typename CLASSIFIER>
static void performClassifyHardFaceGroups(FLGroupList &group,
carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
const CLASSIFIER & /* classifier */,
CSG::Collector &collector,
CSG::Hooks &hooks) {
for (FLGroupList::iterator
i = group.begin(); i != group.end();) {
int n_in = 0, n_out = 0, n_on = 0;
FaceLoopGroup &grp = (*i);
FaceLoopList &curr = (grp.face_loops);
V2Set &perim = ((*i).perimeter);
FaceClass fc =FACE_UNCLASSIFIED;
for (FaceLoop *f = curr.head; f; f = f->next) {
carve::mesh::MeshSet<3>::vertex_t *v1, *v2;
v1 = f->vertices.back();
for (size_t j = 0; j < f->vertices.size(); ++j) {
v2 = f->vertices[j];
if (v1 < v2 && perim.find(std::make_pair(v1, v2)) == perim.end()) {
carve::geom3d::Vector c = (v1->v + v2->v) / 2.0;
PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, c);
switch (pc) {
case POINT_IN: n_in++; break;
case POINT_OUT: n_out++; break;
case POINT_ON: n_on++; break;
default: break; // does not happen.
}
}
v1 = v2;
}
}
#if defined(CARVE_DEBUG)
std::cerr << ">>> n_in: " << n_in << " n_on: " << n_on << " n_out: " << n_out << std::endl;
#endif
if (!n_in && !n_out) {
++i;
continue;
}
if (n_in) fc = FACE_IN;
if (n_out) fc = FACE_OUT;
grp.classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&grp, hooks);
i = group.erase(i);
}
}
template <typename CLASSIFIER>
void performFaceLoopWork(carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
FLGroupList &b_loops_grouped,
const CLASSIFIER &classifier,
CSG::Collector &collector,
CSG::Hooks &hooks) {
for (FLGroupList::iterator i = b_loops_grouped.begin(), e = b_loops_grouped.end(); i != e;) {
FaceClass fc;
if (classifier.faceLoopSanityChecker(*i)) {
std::cerr << "UNEXPECTED face loop with size != 1." << std::endl;
++i;
continue;
}
CARVE_ASSERT((*i).face_loops.size() == 1);
FaceLoop *fla = (*i).face_loops.head;
const carve::mesh::MeshSet<3>::face_t *f = (fla->orig_face);
std::vector<carve::mesh::MeshSet<3>::vertex_t *> &loop = (fla->vertices);
std::vector<carve::geom2d::P2> proj;
proj.reserve(loop.size());
for (unsigned j = 0; j < loop.size(); ++j) {
proj.push_back(f->project(loop[j]->v));
}
carve::geom2d::P2 pv;
if (!carve::geom2d::pickContainedPoint(proj, pv)) {
CARVE_FAIL("Failed");
}
carve::geom3d::Vector v = f->unproject(pv, f->plane);
const carve::mesh::MeshSet<3>::face_t *hit_face;
PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, v, false, NULL, &hit_face);
switch (pc) {
case POINT_IN: fc = FACE_IN; break;
case POINT_OUT: fc = FACE_OUT; break;
case POINT_ON: {
double d = carve::geom::distance(hit_face->plane, v);
#if defined(CARVE_DEBUG)
std::cerr << "d = " << d << std::endl;
#endif
fc = d < 0 ? FACE_IN : FACE_OUT;
break;
}
default:
CARVE_FAIL("unhandled switch case -- should not happen");
}
#if defined(CARVE_DEBUG)
std::cerr << "CLASS: " << (fc == FACE_IN ? "FACE_IN" : "FACE_OUT" ) << std::endl;
#endif
(*i).classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&*i, hooks);
i = b_loops_grouped.erase(i);
}
}
template <typename CLASSIFIER>
void performClassifyFaceGroups(FLGroupList &a_loops_grouped,
FLGroupList &b_loops_grouped,
VertexClassification &vclass,
carve::mesh::MeshSet<3> *poly_a,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
carve::mesh::MeshSet<3> *poly_b,
const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree,
const CLASSIFIER &classifier,
CSG::Collector &collector,
CSG::Hooks &hooks) {
classifier.classifySimple(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_b);
classifier.classifyEasy(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
classifier.classifyHard(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
{
GroupLookup a_map;
FLGroupList::iterator i, j;
FaceClass fc;
for (i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
V2Set::iterator it_end = (*i).perimeter.end();
V2Set::iterator it_begin = (*i).perimeter.begin();
if(it_begin != it_end) {
a_map[std::min_element(it_begin, it_end)->first].push_back(i);
}
}
for (i = b_loops_grouped.begin(); i != b_loops_grouped.end();) {
GroupLookup::iterator a = a_map.end();
V2Set::iterator it_end = (*i).perimeter.end();
V2Set::iterator it_begin = (*i).perimeter.begin();
if(it_begin != it_end) {
a = a_map.find(std::min_element(it_begin, it_end)->first);
}
if (a == a_map.end()) { ++i; continue; }
for (std::list<FLGroupList::iterator>::iterator ji = (*a).second.begin(), je = (*a).second.end(); ji != je; ++ji) {
j = (*ji);
if (isSameFwd((*i).perimeter, (*j).perimeter)) {
#if defined(CARVE_DEBUG)
std::cerr << "SAME FWD PAIR" << std::endl;
#endif
fc = FACE_ON_ORIENT_OUT;
goto face_pair;
} else if (isSameRev((*i).perimeter, (*j).perimeter)) {
#if defined(CARVE_DEBUG)
std::cerr << "SAME REV PAIR" << std::endl;
#endif
fc = FACE_ON_ORIENT_IN;
goto face_pair;
}
}
++i;
continue;
face_pair: {
V2Set::iterator it_end = (*j).perimeter.end();
V2Set::iterator it_begin = (*j).perimeter.begin();
if(it_begin != it_end) {
a_map[std::min_element(it_begin, it_end)->first].remove(j);
}
(*i).classification.push_back(ClassificationInfo(NULL, fc));
(*j).classification.push_back(ClassificationInfo(NULL, fc));
collector.collect(&*i, hooks);
collector.collect(&*j, hooks);
j = a_loops_grouped.erase(j);
i = b_loops_grouped.erase(i);
}
}
}
// XXX: this may leave some face groups that are IN or OUT, and
// consist of a single face loop.
classifier.postRemovalCheck(a_loops_grouped, b_loops_grouped);
classifier.faceLoopWork(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
classifier.finish(a_loops_grouped, b_loops_grouped);
}
}
}