blender/source/gameengine/Ketsji/KX_PythonInit.cpp
Benoit Bolsee 42557f90bd BGE performance, 3rd round: culling and rasterizer.
This commit extend the technique of dynamic linked list to the mesh
slots so as to eliminate dumb scan or map lookup. It provides massive 
performance improvement in the culling and in the rasterizer when 
the majority of objects are static.

Other improvements:
- Compute the opengl matrix only for objects that are visible.
- Simplify hash function for GEN_HasedPtr
- Scan light list instead of general object list to render shadows
- Remove redundant opengl calls to set specularity, shinyness and diffuse
  between each mesh slots.
- Cache GPU material to avoid frequent call to GPU_material_from_blender
- Only set once the fixed elements of mesh slot
- Use more inline function

The following table shows the performance increase between 2.48, 1st round
and this round of improvement. The test was done with a scene containing 
40000 objects, of which 1000 are in the view frustrum approximately. The
object are simple textured cube to make sure the GPU is not the bottleneck.
As some of the rasterizer processing time has moved under culling, I present
the sum of scenegraph(includes culling)+rasterizer time

Scenegraph+rasterizer(ms)       2.48      1st round       3rd round

All objects static,            323.0           86.0             7.2
all visible, 1000 in 
the view frustrum

All objects static,            219.0           49.7             N/A(*)
all invisible.

All objects moving,            323.0          105.6            34.7
all visible, 1000 in 
the view frustrum

Scene destruction              40min          40min              4s

(*) : this time is not representative because the frame rate was at 60fps.
      In that case, the GPU holds down the GE by frame sync. By design, the
      overhead of the rasterizer is 0 when the the objects are invisible. 

This table shows a global speed up between 9x and 45x compared to 2.48a
for scenegraph, culling and rasterizer overhead. The speed up goes much
higher when objects are invisible.

An additional 2-4x speed up is possible in the scenegraph by upgrading
the Moto library to use Eigen2 BLAS library instead of C++ classes but
the scenegraph is already so fast that it is not a priority right now.

Next speed up in logic: many things to do there...
2009-05-07 09:13:01 +00:00

2225 lines
74 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Initialize Python thingies.
*/
#include "GL/glew.h"
// directory header for py function getBlendFileList
#include <stdlib.h>
#ifndef WIN32
#include <dirent.h>
#else
#include "BLI_winstuff.h"
#endif
#ifdef WIN32
#pragma warning (disable : 4786)
#endif //WIN32
#include "KX_PythonInit.h"
//python physics binding
#include "KX_PyConstraintBinding.h"
#include "KX_KetsjiEngine.h"
#include "KX_RadarSensor.h"
#include "KX_RaySensor.h"
#include "KX_SceneActuator.h"
#include "KX_GameActuator.h"
#include "KX_ParentActuator.h"
#include "KX_SCA_DynamicActuator.h"
#include "SCA_IInputDevice.h"
#include "SCA_PropertySensor.h"
#include "SCA_RandomActuator.h"
#include "SCA_KeyboardSensor.h" /* IsPrintable, ToCharacter */
#include "KX_ConstraintActuator.h"
#include "KX_IpoActuator.h"
#include "KX_SoundActuator.h"
#include "KX_StateActuator.h"
#include "BL_ActionActuator.h"
#include "RAS_IRasterizer.h"
#include "RAS_ICanvas.h"
#include "RAS_BucketManager.h"
#include "RAS_2DFilterManager.h"
#include "MT_Vector3.h"
#include "MT_Point3.h"
#include "ListValue.h"
#include "KX_Scene.h"
#include "SND_DeviceManager.h"
#include "NG_NetworkScene.h" //Needed for sendMessage()
#include "BL_Shader.h"
#include "KX_PyMath.h"
#include "PyObjectPlus.h"
#include "KX_PythonInitTypes.h"
/* we only need this to get a list of libraries from the main struct */
#include "DNA_ID.h"
#include "BKE_main.h"
extern "C" {
#include "bpy_internal_import.h" /* from the blender python api, but we want to import text too! */
#if PY_VERSION_HEX < 0x03000000
#include "Mathutils.h" // Blender.Mathutils module copied here so the blenderlayer can use.
#include "Geometry.h" // Blender.Geometry module copied here so the blenderlayer can use.
#include "BGL.h"
#endif
}
#include "marshal.h" /* python header for loading/saving dicts */
#include "PHY_IPhysicsEnvironment.h"
// FIXME: Enable for access to blender python modules. This is disabled because
// python has dependencies on a lot of other modules and is a pain to link.
//#define USE_BLENDER_PYTHON
#ifdef USE_BLENDER_PYTHON
//#include "BPY_extern.h"
#endif
#include "BKE_utildefines.h"
#include "BKE_global.h"
#include "BLI_blenlib.h"
#include "GPU_material.h"
static void setSandbox(TPythonSecurityLevel level);
static void clearGameModules();
// 'local' copy of canvas ptr, for window height/width python scripts
static RAS_ICanvas* gp_Canvas = NULL;
static KX_Scene* gp_KetsjiScene = NULL;
static KX_KetsjiEngine* gp_KetsjiEngine = NULL;
static RAS_IRasterizer* gp_Rasterizer = NULL;
static char gp_GamePythonPath[FILE_MAXDIR + FILE_MAXFILE] = "";
static PyObject *gp_OrigPythonSysPath= NULL;
void KX_RasterizerDrawDebugLine(const MT_Vector3& from,const MT_Vector3& to,const MT_Vector3& color)
{
if (gp_Rasterizer)
gp_Rasterizer->DrawDebugLine(from,to,color);
}
/* Macro for building the keyboard translation */
//#define KX_MACRO_addToDict(dict, name) PyDict_SetItemString(dict, #name, PyInt_FromLong(SCA_IInputDevice::KX_##name))
#define KX_MACRO_addToDict(dict, name) PyDict_SetItemString(dict, #name, item=PyInt_FromLong(name)); Py_DECREF(item)
/* For the defines for types from logic bricks, we do stuff explicitly... */
#define KX_MACRO_addTypesToDict(dict, name, name2) PyDict_SetItemString(dict, #name, item=PyInt_FromLong(name2)); Py_DECREF(item)
// temporarily python stuff, will be put in another place later !
#include "KX_Python.h"
#include "SCA_PythonController.h"
// List of methods defined in the module
static PyObject* ErrorObject;
STR_String gPyGetRandomFloat_doc="getRandomFloat returns a random floating point value in the range [0..1)";
static PyObject* gPyGetRandomFloat(PyObject*)
{
return PyFloat_FromDouble(MT_random());
}
static PyObject* gPySetGravity(PyObject*, PyObject* value)
{
MT_Vector3 vec;
if (!PyVecTo(value, vec))
return NULL;
if (gp_KetsjiScene)
gp_KetsjiScene->SetGravity(vec);
Py_RETURN_NONE;
}
static char gPyExpandPath_doc[] =
"(path) - Converts a blender internal path into a proper file system path.\n\
path - the string path to convert.\n\n\
Use / as directory separator in path\n\
You can use '//' at the start of the string to define a relative path;\n\
Blender replaces that string by the directory of the startup .blend or runtime\n\
file to make a full path name (doesn't change during the game, even if you load\n\
other .blend).\n\
The function also converts the directory separator to the local file system format.";
static PyObject* gPyExpandPath(PyObject*, PyObject* args)
{
char expanded[FILE_MAXDIR + FILE_MAXFILE];
char* filename;
if (!PyArg_ParseTuple(args,"s:ExpandPath",&filename))
return NULL;
BLI_strncpy(expanded, filename, FILE_MAXDIR + FILE_MAXFILE);
BLI_convertstringcode(expanded, gp_GamePythonPath);
return PyString_FromString(expanded);
}
static char gPySendMessage_doc[] =
"sendMessage(subject, [body, to, from])\n\
sends a message in same manner as a message actuator\
subject = Subject of the message\
body = Message body\
to = Name of object to send the message to\
from = Name of object to sned the string from";
static PyObject* gPySendMessage(PyObject*, PyObject* args)
{
char* subject;
char* body = (char *)"";
char* to = (char *)"";
char* from = (char *)"";
if (!PyArg_ParseTuple(args, "s|sss:sendMessage", &subject, &body, &to, &from))
return NULL;
gp_KetsjiScene->GetNetworkScene()->SendMessage(to, from, subject, body);
Py_RETURN_NONE;
}
static bool usedsp = false;
// this gets a pointer to an array filled with floats
static PyObject* gPyGetSpectrum(PyObject*)
{
SND_IAudioDevice* audiodevice = SND_DeviceManager::Instance();
PyObject* resultlist = PyList_New(512);
if (audiodevice)
{
if (!usedsp)
{
audiodevice->StartUsingDSP();
usedsp = true;
}
float* spectrum = audiodevice->GetSpectrum();
for (int index = 0; index < 512; index++)
{
PyList_SET_ITEM(resultlist, index, PyFloat_FromDouble(spectrum[index]));
}
}
else {
for (int index = 0; index < 512; index++)
{
PyList_SET_ITEM(resultlist, index, PyFloat_FromDouble(0.0));
}
}
return resultlist;
}
#if 0 // unused
static PyObject* gPyStartDSP(PyObject*, PyObject* args)
{
SND_IAudioDevice* audiodevice = SND_DeviceManager::Instance();
if (!audiodevice) {
PyErr_SetString(PyExc_RuntimeError, "no audio device available");
return NULL;
}
if (!usedsp) {
audiodevice->StartUsingDSP();
usedsp = true;
}
Py_RETURN_NONE;
}
#endif
static PyObject* gPyStopDSP(PyObject*, PyObject* args)
{
SND_IAudioDevice* audiodevice = SND_DeviceManager::Instance();
if (!audiodevice) {
PyErr_SetString(PyExc_RuntimeError, "no audio device available");
return NULL;
}
if (usedsp) {
audiodevice->StopUsingDSP();
usedsp = true;
}
Py_RETURN_NONE;
}
static PyObject* gPySetLogicTicRate(PyObject*, PyObject* args)
{
float ticrate;
if (!PyArg_ParseTuple(args, "f:setLogicTicRate", &ticrate))
return NULL;
KX_KetsjiEngine::SetTicRate(ticrate);
Py_RETURN_NONE;
}
static PyObject* gPyGetLogicTicRate(PyObject*)
{
return PyFloat_FromDouble(KX_KetsjiEngine::GetTicRate());
}
static PyObject* gPySetMaxLogicFrame(PyObject*, PyObject* args)
{
int frame;
if (!PyArg_ParseTuple(args, "i:setMaxLogicFrame", &frame))
return NULL;
KX_KetsjiEngine::SetMaxLogicFrame(frame);
Py_RETURN_NONE;
}
static PyObject* gPyGetMaxLogicFrame(PyObject*)
{
return PyInt_FromLong(KX_KetsjiEngine::GetMaxLogicFrame());
}
static PyObject* gPySetPhysicsTicRate(PyObject*, PyObject* args)
{
float ticrate;
if (!PyArg_ParseTuple(args, "f:setPhysicsTicRate", &ticrate))
return NULL;
PHY_GetActiveEnvironment()->setFixedTimeStep(true,ticrate);
Py_RETURN_NONE;
}
#if 0 // unused
static PyObject* gPySetPhysicsDebug(PyObject*, PyObject* args)
{
int debugMode;
if (!PyArg_ParseTuple(args, "i:setPhysicsDebug", &debugMode))
return NULL;
PHY_GetActiveEnvironment()->setDebugMode(debugMode);
Py_RETURN_NONE;
}
#endif
static PyObject* gPyGetPhysicsTicRate(PyObject*)
{
return PyFloat_FromDouble(PHY_GetActiveEnvironment()->getFixedTimeStep());
}
static PyObject* gPyGetAverageFrameRate(PyObject*)
{
return PyFloat_FromDouble(KX_KetsjiEngine::GetAverageFrameRate());
}
static PyObject* gPyGetBlendFileList(PyObject*, PyObject* args)
{
char cpath[sizeof(gp_GamePythonPath)];
char *searchpath = NULL;
PyObject* list, *value;
DIR *dp;
struct dirent *dirp;
if (!PyArg_ParseTuple(args, "|s:getBlendFileList", &searchpath))
return NULL;
list = PyList_New(0);
if (searchpath) {
BLI_strncpy(cpath, searchpath, FILE_MAXDIR + FILE_MAXFILE);
BLI_convertstringcode(cpath, gp_GamePythonPath);
} else {
/* Get the dir only */
BLI_split_dirfile_basic(gp_GamePythonPath, cpath, NULL);
}
if((dp = opendir(cpath)) == NULL) {
/* todo, show the errno, this shouldnt happen anyway if the blendfile is readable */
fprintf(stderr, "Could not read directoty (%s) failed, code %d (%s)\n", cpath, errno, strerror(errno));
return list;
}
while ((dirp = readdir(dp)) != NULL) {
if (BLI_testextensie(dirp->d_name, ".blend")) {
value = PyString_FromString(dirp->d_name);
PyList_Append(list, value);
Py_DECREF(value);
}
}
closedir(dp);
return list;
}
static STR_String gPyGetCurrentScene_doc =
"getCurrentScene()\n"
"Gets a reference to the current scene.\n";
static PyObject* gPyGetCurrentScene(PyObject* self)
{
return gp_KetsjiScene->GetProxy();
}
static STR_String gPyGetSceneList_doc =
"getSceneList()\n"
"Return a list of converted scenes.\n";
static PyObject* gPyGetSceneList(PyObject* self)
{
KX_KetsjiEngine* m_engine = KX_GetActiveEngine();
PyObject* list;
KX_SceneList* scenes = m_engine->CurrentScenes();
int numScenes = scenes->size();
int i;
list = PyList_New(numScenes);
for (i=0;i<numScenes;i++)
{
KX_Scene* scene = scenes->at(i);
PyList_SET_ITEM(list, i, scene->GetProxy());
}
return list;
}
static PyObject *pyPrintExt(PyObject *,PyObject *,PyObject *)
{
#define pprint(x) std::cout << x << std::endl;
bool count=0;
bool support=0;
pprint("Supported Extensions...");
pprint(" GL_ARB_shader_objects supported? "<< (GLEW_ARB_shader_objects?"yes.":"no."));
count = 1;
support= GLEW_ARB_vertex_shader;
pprint(" GL_ARB_vertex_shader supported? "<< (support?"yes.":"no."));
count = 1;
if(support){
pprint(" ----------Details----------");
int max=0;
glGetIntegerv(GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB, (GLint*)&max);
pprint(" Max uniform components." << max);
glGetIntegerv(GL_MAX_VARYING_FLOATS_ARB, (GLint*)&max);
pprint(" Max varying floats." << max);
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB, (GLint*)&max);
pprint(" Max vertex texture units." << max);
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB, (GLint*)&max);
pprint(" Max combined texture units." << max);
pprint("");
}
support=GLEW_ARB_fragment_shader;
pprint(" GL_ARB_fragment_shader supported? "<< (support?"yes.":"no."));
count = 1;
if(support){
pprint(" ----------Details----------");
int max=0;
glGetIntegerv(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB, (GLint*)&max);
pprint(" Max uniform components." << max);
pprint("");
}
support = GLEW_ARB_texture_cube_map;
pprint(" GL_ARB_texture_cube_map supported? "<< (support?"yes.":"no."));
count = 1;
if(support){
pprint(" ----------Details----------");
int size=0;
glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB, (GLint*)&size);
pprint(" Max cubemap size." << size);
pprint("");
}
support = GLEW_ARB_multitexture;
count = 1;
pprint(" GL_ARB_multitexture supported? "<< (support?"yes.":"no."));
if(support){
pprint(" ----------Details----------");
int units=0;
glGetIntegerv(GL_MAX_TEXTURE_UNITS_ARB, (GLint*)&units);
pprint(" Max texture units available. " << units);
pprint("");
}
pprint(" GL_ARB_texture_env_combine supported? "<< (GLEW_ARB_texture_env_combine?"yes.":"no."));
count = 1;
if(!count)
pprint("No extenstions are used in this build");
Py_RETURN_NONE;
}
static struct PyMethodDef game_methods[] = {
{"expandPath", (PyCFunction)gPyExpandPath, METH_VARARGS, (PY_METHODCHAR)gPyExpandPath_doc},
{"sendMessage", (PyCFunction)gPySendMessage, METH_VARARGS, (PY_METHODCHAR)gPySendMessage_doc},
{"getCurrentController",
(PyCFunction) SCA_PythonController::sPyGetCurrentController,
METH_NOARGS, (PY_METHODCHAR)SCA_PythonController::sPyGetCurrentController__doc__},
{"getCurrentScene", (PyCFunction) gPyGetCurrentScene,
METH_NOARGS, (PY_METHODCHAR)gPyGetCurrentScene_doc.Ptr()},
{"getSceneList", (PyCFunction) gPyGetSceneList,
METH_NOARGS, (PY_METHODCHAR)gPyGetSceneList_doc.Ptr()},
{"addActiveActuator",(PyCFunction) SCA_PythonController::sPyAddActiveActuator,
METH_VARARGS, (PY_METHODCHAR)SCA_PythonController::sPyAddActiveActuator__doc__},
{"getRandomFloat",(PyCFunction) gPyGetRandomFloat,
METH_NOARGS, (PY_METHODCHAR)gPyGetRandomFloat_doc.Ptr()},
{"setGravity",(PyCFunction) gPySetGravity, METH_O, (PY_METHODCHAR)"set Gravitation"},
{"getSpectrum",(PyCFunction) gPyGetSpectrum, METH_NOARGS, (PY_METHODCHAR)"get audio spectrum"},
{"stopDSP",(PyCFunction) gPyStopDSP, METH_VARARGS, (PY_METHODCHAR)"stop using the audio dsp (for performance reasons)"},
{"getMaxLogicFrame", (PyCFunction) gPyGetMaxLogicFrame, METH_NOARGS, (PY_METHODCHAR)"Gets the max number of logic frame per render frame"},
{"setMaxLogicFrame", (PyCFunction) gPySetMaxLogicFrame, METH_VARARGS, (PY_METHODCHAR)"Sets the max number of logic frame per render frame"},
{"getLogicTicRate", (PyCFunction) gPyGetLogicTicRate, METH_NOARGS, (PY_METHODCHAR)"Gets the logic tic rate"},
{"setLogicTicRate", (PyCFunction) gPySetLogicTicRate, METH_VARARGS, (PY_METHODCHAR)"Sets the logic tic rate"},
{"getPhysicsTicRate", (PyCFunction) gPyGetPhysicsTicRate, METH_NOARGS, (PY_METHODCHAR)"Gets the physics tic rate"},
{"setPhysicsTicRate", (PyCFunction) gPySetPhysicsTicRate, METH_VARARGS, (PY_METHODCHAR)"Sets the physics tic rate"},
{"getAverageFrameRate", (PyCFunction) gPyGetAverageFrameRate, METH_NOARGS, (PY_METHODCHAR)"Gets the estimated average frame rate"},
{"getBlendFileList", (PyCFunction)gPyGetBlendFileList, METH_VARARGS, (PY_METHODCHAR)"Gets a list of blend files in the same directory as the current blend file"},
{"PrintGLInfo", (PyCFunction)pyPrintExt, METH_NOARGS, (PY_METHODCHAR)"Prints GL Extension Info"},
{NULL, (PyCFunction) NULL, 0, NULL }
};
static PyObject* gPyGetScreenPosition(PyObject*, PyObject* value)
{
MT_Vector3 vect;
KX_GameObject *obj = NULL;
if (!PyVecTo(value, vect))
{
if(ConvertPythonToGameObject(value, &obj, true, ""))
{
PyErr_Clear();
vect = MT_Vector3(obj->NodeGetWorldPosition());
}
else
{
PyErr_SetString(PyExc_TypeError, "Error in getScreenPosition. Expected a Vector3 or a KX_GameObject or a string for a name of a KX_GameObject");
return NULL;
}
}
GLdouble modelMatrix[16];
GLdouble projMatrix[16];
GLint viewport[4];
GLdouble win[3];
glGetIntegerv(GL_VIEWPORT, viewport);
glGetDoublev(GL_MODELVIEW_MATRIX, modelMatrix);
glGetDoublev(GL_PROJECTION_MATRIX, projMatrix);
gluProject(vect[0], vect[1], vect[2], modelMatrix, projMatrix, viewport, &win[0], &win[1], &win[2]);
vect[0] = win[0] / (viewport[0] + viewport[2]);
vect[1] = win[1] / (viewport[1] + viewport[3]);
PyObject* ret = PyTuple_New(2);
if(ret){
PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(vect[0]));
PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(vect[1]));
return ret;
}
return NULL;
}
static PyObject* gPyGetScreenVect(PyObject*, PyObject* args)
{
double x,y;
if (!PyArg_ParseTuple(args,"dd:getScreenVect",&x,&y))
return NULL;
MT_Vector3 vect;
MT_Point3 campos, screenpos;
GLdouble modelMatrix[16];
GLdouble projMatrix[16];
GLint viewport[4];
GLdouble win[3];
glGetIntegerv(GL_VIEWPORT, viewport);
glGetDoublev(GL_MODELVIEW_MATRIX, modelMatrix);
glGetDoublev(GL_PROJECTION_MATRIX, projMatrix);
vect[0] = x * viewport[2];
vect[1] = y * viewport[3];
vect[0] += viewport[0];
vect[1] += viewport[1];
glReadPixels(x, y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &vect[2]);
gluUnProject(vect[0], vect[1], vect[2], modelMatrix, projMatrix, viewport, &win[0], &win[1], &win[2]);
campos = gp_Rasterizer->GetCameraPosition();
screenpos = MT_Point3(win[0], win[1], win[2]);
vect = campos-screenpos;
vect.normalize();
return PyObjectFrom(vect);
}
static PyObject* gPyGetScreenRay(PyObject* self, PyObject* args)
{
KX_Camera* cam;
MT_Vector3 vect;
double x,y,dist;
char *propName = NULL;
if (!PyArg_ParseTuple(args,"ddd|s:getScreenRay",&x,&y,&dist,&propName))
return NULL;
PyObject* argValue = PyTuple_New(2);
if (argValue) {
PyTuple_SET_ITEM(argValue, 0, PyFloat_FromDouble(x));
PyTuple_SET_ITEM(argValue, 1, PyFloat_FromDouble(y));
}
if(!PyVecTo(gPyGetScreenVect(self,argValue), vect))
{
Py_DECREF(argValue);
PyErr_SetString(PyExc_TypeError,
"Error in getScreenRay. Invalid 2D coordinate. Expected a normalized 2D screen coordinate and an optional property argument");
return NULL;
}
Py_DECREF(argValue);
cam = gp_KetsjiScene->GetActiveCamera();
dist *= -1.0;
argValue = (propName?PyTuple_New(3):PyTuple_New(2));
if (argValue) {
PyTuple_SET_ITEM(argValue, 0, PyObjectFrom(vect));
PyTuple_SET_ITEM(argValue, 1, PyFloat_FromDouble(dist));
if (propName)
PyTuple_SET_ITEM(argValue, 2, PyString_FromString(propName));
PyObject* ret= cam->PyrayCastTo(argValue,NULL);
Py_DECREF(argValue);
return ret;
}
return NULL;
}
static PyObject* gPyGetWindowHeight(PyObject*, PyObject* args)
{
return PyInt_FromLong((gp_Canvas ? gp_Canvas->GetHeight() : 0));
}
static PyObject* gPyGetWindowWidth(PyObject*, PyObject* args)
{
return PyInt_FromLong((gp_Canvas ? gp_Canvas->GetWidth() : 0));
}
// temporarility visibility thing, will be moved to rasterizer/renderer later
bool gUseVisibilityTemp = false;
static PyObject* gPyEnableVisibility(PyObject*, PyObject* args)
{
int visible;
if (!PyArg_ParseTuple(args,"i:enableVisibility",&visible))
return NULL;
gUseVisibilityTemp = (visible != 0);
Py_RETURN_NONE;
}
static PyObject* gPyShowMouse(PyObject*, PyObject* args)
{
int visible;
if (!PyArg_ParseTuple(args,"i:showMouse",&visible))
return NULL;
if (visible)
{
if (gp_Canvas)
gp_Canvas->SetMouseState(RAS_ICanvas::MOUSE_NORMAL);
} else
{
if (gp_Canvas)
gp_Canvas->SetMouseState(RAS_ICanvas::MOUSE_INVISIBLE);
}
Py_RETURN_NONE;
}
static PyObject* gPySetMousePosition(PyObject*, PyObject* args)
{
int x,y;
if (!PyArg_ParseTuple(args,"ii:setMousePosition",&x,&y))
return NULL;
if (gp_Canvas)
gp_Canvas->SetMousePosition(x,y);
Py_RETURN_NONE;
}
static PyObject* gPySetEyeSeparation(PyObject*, PyObject* args)
{
float sep;
if (!PyArg_ParseTuple(args, "f:setEyeSeparation", &sep))
return NULL;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setEyeSeparation(float), Rasterizer not available");
return NULL;
}
gp_Rasterizer->SetEyeSeparation(sep);
Py_RETURN_NONE;
}
static PyObject* gPyGetEyeSeparation(PyObject*)
{
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.getEyeSeparation(), Rasterizer not available");
return NULL;
}
return PyFloat_FromDouble(gp_Rasterizer->GetEyeSeparation());
}
static PyObject* gPySetFocalLength(PyObject*, PyObject* args)
{
float focus;
if (!PyArg_ParseTuple(args, "f:setFocalLength", &focus))
return NULL;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setFocalLength(float), Rasterizer not available");
return NULL;
}
gp_Rasterizer->SetFocalLength(focus);
Py_RETURN_NONE;
}
static PyObject* gPyGetFocalLength(PyObject*, PyObject*, PyObject*)
{
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.getFocalLength(), Rasterizer not available");
return NULL;
}
return PyFloat_FromDouble(gp_Rasterizer->GetFocalLength());
Py_RETURN_NONE;
}
static PyObject* gPySetBackgroundColor(PyObject*, PyObject* value)
{
MT_Vector4 vec;
if (!PyVecTo(value, vec))
return NULL;
if (gp_Canvas)
{
gp_Rasterizer->SetBackColor(vec[0], vec[1], vec[2], vec[3]);
}
Py_RETURN_NONE;
}
static PyObject* gPySetMistColor(PyObject*, PyObject* value)
{
MT_Vector3 vec;
if (!PyVecTo(value, vec))
return NULL;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistColor(color), Rasterizer not available");
return NULL;
}
gp_Rasterizer->SetFogColor(vec[0], vec[1], vec[2]);
Py_RETURN_NONE;
}
static PyObject* gPyDisableMist(PyObject*)
{
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistColor(color), Rasterizer not available");
return NULL;
}
gp_Rasterizer->DisableFog();
Py_RETURN_NONE;
}
static PyObject* gPySetMistStart(PyObject*, PyObject* args)
{
float miststart;
if (!PyArg_ParseTuple(args,"f:setMistStart",&miststart))
return NULL;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistStart(float), Rasterizer not available");
return NULL;
}
gp_Rasterizer->SetFogStart(miststart);
Py_RETURN_NONE;
}
static PyObject* gPySetMistEnd(PyObject*, PyObject* args)
{
float mistend;
if (!PyArg_ParseTuple(args,"f:setMistEnd",&mistend))
return NULL;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setMistEnd(float), Rasterizer not available");
return NULL;
}
gp_Rasterizer->SetFogEnd(mistend);
Py_RETURN_NONE;
}
static PyObject* gPySetAmbientColor(PyObject*, PyObject* value)
{
MT_Vector3 vec;
if (!PyVecTo(value, vec))
return NULL;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.setAmbientColor(color), Rasterizer not available");
return NULL;
}
gp_Rasterizer->SetAmbientColor(vec[0], vec[1], vec[2]);
Py_RETURN_NONE;
}
static PyObject* gPyMakeScreenshot(PyObject*, PyObject* args)
{
char* filename;
if (!PyArg_ParseTuple(args,"s:makeScreenshot",&filename))
return NULL;
if (gp_Canvas)
{
gp_Canvas->MakeScreenShot(filename);
}
Py_RETURN_NONE;
}
static PyObject* gPyEnableMotionBlur(PyObject*, PyObject* args)
{
float motionblurvalue;
if (!PyArg_ParseTuple(args,"f:enableMotionBlur",&motionblurvalue))
return NULL;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.enableMotionBlur(float), Rasterizer not available");
return NULL;
}
gp_Rasterizer->EnableMotionBlur(motionblurvalue);
Py_RETURN_NONE;
}
static PyObject* gPyDisableMotionBlur(PyObject*)
{
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.disableMotionBlur(), Rasterizer not available");
return NULL;
}
gp_Rasterizer->DisableMotionBlur();
Py_RETURN_NONE;
}
int getGLSLSettingFlag(char *setting)
{
if(strcmp(setting, "lights") == 0)
return G_FILE_GLSL_NO_LIGHTS;
else if(strcmp(setting, "shaders") == 0)
return G_FILE_GLSL_NO_SHADERS;
else if(strcmp(setting, "shadows") == 0)
return G_FILE_GLSL_NO_SHADOWS;
else if(strcmp(setting, "ramps") == 0)
return G_FILE_GLSL_NO_RAMPS;
else if(strcmp(setting, "nodes") == 0)
return G_FILE_GLSL_NO_NODES;
else if(strcmp(setting, "extra_textures") == 0)
return G_FILE_GLSL_NO_EXTRA_TEX;
else
return -1;
}
static PyObject* gPySetGLSLMaterialSetting(PyObject*,
PyObject* args,
PyObject*)
{
char *setting;
int enable, flag, fileflags;
if (!PyArg_ParseTuple(args,"si:setGLSLMaterialSetting",&setting,&enable))
return NULL;
flag = getGLSLSettingFlag(setting);
if (flag==-1) {
PyErr_SetString(PyExc_ValueError, "Rasterizer.setGLSLMaterialSetting(string): glsl setting is not known");
return NULL;
}
fileflags = G.fileflags;
if (enable)
G.fileflags &= ~flag;
else
G.fileflags |= flag;
/* display lists and GLSL materials need to be remade */
if(G.fileflags != fileflags) {
GPU_materials_free();
if(gp_KetsjiEngine) {
KX_SceneList *scenes = gp_KetsjiEngine->CurrentScenes();
KX_SceneList::iterator it;
for(it=scenes->begin(); it!=scenes->end(); it++)
if((*it)->GetBucketManager()) {
(*it)->GetBucketManager()->ReleaseDisplayLists();
(*it)->GetBucketManager()->ReleaseMaterials();
}
}
}
Py_RETURN_NONE;
}
static PyObject* gPyGetGLSLMaterialSetting(PyObject*,
PyObject* args,
PyObject*)
{
char *setting;
int enabled = 0, flag;
if (!PyArg_ParseTuple(args,"s:getGLSLMaterialSetting",&setting))
return NULL;
flag = getGLSLSettingFlag(setting);
if (flag==-1) {
PyErr_SetString(PyExc_ValueError, "Rasterizer.getGLSLMaterialSetting(string): glsl setting is not known");
return NULL;
}
enabled = ((G.fileflags & flag) != 0);
return PyInt_FromLong(enabled);
}
#define KX_TEXFACE_MATERIAL 0
#define KX_BLENDER_MULTITEX_MATERIAL 1
#define KX_BLENDER_GLSL_MATERIAL 2
static PyObject* gPySetMaterialType(PyObject*,
PyObject* args,
PyObject*)
{
int flag, type;
if (!PyArg_ParseTuple(args,"i:setMaterialType",&type))
return NULL;
if(type == KX_BLENDER_GLSL_MATERIAL)
flag = G_FILE_GAME_MAT|G_FILE_GAME_MAT_GLSL;
else if(type == KX_BLENDER_MULTITEX_MATERIAL)
flag = G_FILE_GAME_MAT;
else if(type == KX_TEXFACE_MATERIAL)
flag = 0;
else {
PyErr_SetString(PyExc_ValueError, "Rasterizer.setMaterialType(int): material type is not known");
return NULL;
}
G.fileflags &= ~(G_FILE_GAME_MAT|G_FILE_GAME_MAT_GLSL);
G.fileflags |= flag;
Py_RETURN_NONE;
}
static PyObject* gPyGetMaterialType(PyObject*)
{
int flag;
if(G.fileflags & G_FILE_GAME_MAT_GLSL)
flag = KX_BLENDER_GLSL_MATERIAL;
else if(G.fileflags & G_FILE_GAME_MAT)
flag = KX_BLENDER_MULTITEX_MATERIAL;
else
flag = KX_TEXFACE_MATERIAL;
return PyInt_FromLong(flag);
}
static PyObject* gPyDrawLine(PyObject*, PyObject* args)
{
PyObject* ob_from;
PyObject* ob_to;
PyObject* ob_color;
if (!gp_Rasterizer) {
PyErr_SetString(PyExc_RuntimeError, "Rasterizer.drawLine(obFrom, obTo, color): Rasterizer not available");
return NULL;
}
if (!PyArg_ParseTuple(args,"OOO:drawLine",&ob_from,&ob_to,&ob_color))
return NULL;
MT_Vector3 from;
MT_Vector3 to;
MT_Vector3 color;
if (!PyVecTo(ob_from, from))
return NULL;
if (!PyVecTo(ob_to, to))
return NULL;
if (!PyVecTo(ob_color, color))
return NULL;
gp_Rasterizer->DrawDebugLine(from,to,color);
Py_RETURN_NONE;
}
static struct PyMethodDef rasterizer_methods[] = {
{"getScreenPosition",(PyCFunction) gPyGetScreenPosition,
METH_O, "getScreenPosition doc"},
{"getScreenVect",(PyCFunction) gPyGetScreenVect,
METH_VARARGS, "getScreenVect doc"},
{"getScreenRay",(PyCFunction) gPyGetScreenRay,
METH_VARARGS, "getScreenRay doc"},
{"getWindowWidth",(PyCFunction) gPyGetWindowWidth,
METH_VARARGS, "getWindowWidth doc"},
{"getWindowHeight",(PyCFunction) gPyGetWindowHeight,
METH_VARARGS, "getWindowHeight doc"},
{"makeScreenshot",(PyCFunction)gPyMakeScreenshot,
METH_VARARGS, "make Screenshot doc"},
{"enableVisibility",(PyCFunction) gPyEnableVisibility,
METH_VARARGS, "enableVisibility doc"},
{"showMouse",(PyCFunction) gPyShowMouse,
METH_VARARGS, "showMouse(bool visible)"},
{"setMousePosition",(PyCFunction) gPySetMousePosition,
METH_VARARGS, "setMousePosition(int x,int y)"},
{"setBackgroundColor",(PyCFunction)gPySetBackgroundColor,METH_O,"set Background Color (rgb)"},
{"setAmbientColor",(PyCFunction)gPySetAmbientColor,METH_O,"set Ambient Color (rgb)"},
{"disableMist",(PyCFunction)gPyDisableMist,METH_NOARGS,"turn off mist"},
{"setMistColor",(PyCFunction)gPySetMistColor,METH_O,"set Mist Color (rgb)"},
{"setMistStart",(PyCFunction)gPySetMistStart,METH_VARARGS,"set Mist Start(rgb)"},
{"setMistEnd",(PyCFunction)gPySetMistEnd,METH_VARARGS,"set Mist End(rgb)"},
{"enableMotionBlur",(PyCFunction)gPyEnableMotionBlur,METH_VARARGS,"enable motion blur"},
{"disableMotionBlur",(PyCFunction)gPyDisableMotionBlur,METH_NOARGS,"disable motion blur"},
{"setEyeSeparation", (PyCFunction) gPySetEyeSeparation, METH_VARARGS, "set the eye separation for stereo mode"},
{"getEyeSeparation", (PyCFunction) gPyGetEyeSeparation, METH_NOARGS, "get the eye separation for stereo mode"},
{"setFocalLength", (PyCFunction) gPySetFocalLength, METH_VARARGS, "set the focal length for stereo mode"},
{"getFocalLength", (PyCFunction) gPyGetFocalLength, METH_VARARGS, "get the focal length for stereo mode"},
{"setMaterialMode",(PyCFunction) gPySetMaterialType,
METH_VARARGS, "set the material mode to use for OpenGL rendering"},
{"getMaterialMode",(PyCFunction) gPyGetMaterialType,
METH_NOARGS, "get the material mode being used for OpenGL rendering"},
{"setGLSLMaterialSetting",(PyCFunction) gPySetGLSLMaterialSetting,
METH_VARARGS, "set the state of a GLSL material setting"},
{"getGLSLMaterialSetting",(PyCFunction) gPyGetGLSLMaterialSetting,
METH_VARARGS, "get the state of a GLSL material setting"},
{"drawLine", (PyCFunction) gPyDrawLine,
METH_VARARGS, "draw a line on the screen"},
{ NULL, (PyCFunction) NULL, 0, NULL }
};
// Initialization function for the module (*must* be called initGameLogic)
static char GameLogic_module_documentation[] =
"This is the Python API for the game engine of GameLogic"
;
static char Rasterizer_module_documentation[] =
"This is the Python API for the game engine of Rasterizer"
;
#if (PY_VERSION_HEX >= 0x03000000)
static struct PyModuleDef GameLogic_module_def = {
{}, /* m_base */
"GameLogic", /* m_name */
GameLogic_module_documentation, /* m_doc */
0, /* m_size */
game_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
#endif
PyObject* initGameLogic(KX_KetsjiEngine *engine, KX_Scene* scene) // quick hack to get gravity hook
{
PyObject* m;
PyObject* d;
PyObject* item; /* temp PyObject* storage */
gp_KetsjiEngine = engine;
gp_KetsjiScene = scene;
gUseVisibilityTemp=false;
PyObjectPlus::ClearDeprecationWarning(); /* Not that nice to call here but makes sure warnings are reset between loading scenes */
/* Use existing module where possible
* be careful not to init any runtime vars after this */
m = PyImport_ImportModule( "GameLogic" );
if(m) {
Py_DECREF(m);
return m;
}
else {
PyErr_Clear();
// Create the module and add the functions
#if (PY_VERSION_HEX >= 0x03000000)
m = PyModule_Create(&GameLogic_module_def);
#else
m = Py_InitModule4("GameLogic", game_methods,
GameLogic_module_documentation,
(PyObject*)NULL,PYTHON_API_VERSION);
#endif
}
// Add some symbolic constants to the module
d = PyModule_GetDict(m);
// can be overwritten later for gameEngine instances that can load new blend files and re-initialize this module
// for now its safe to make sure it exists for other areas such as the web plugin
PyDict_SetItemString(d, "globalDict", item=PyDict_New()); Py_DECREF(item);
ErrorObject = PyString_FromString("GameLogic.error");
PyDict_SetItemString(d, "error", ErrorObject);
Py_DECREF(ErrorObject);
// XXXX Add constants here
/* To use logic bricks, we need some sort of constants. Here, we associate */
/* constants and sumbolic names. Add them to dictionary d. */
/* 1. true and false: needed for everyone */
KX_MACRO_addTypesToDict(d, KX_TRUE, SCA_ILogicBrick::KX_TRUE);
KX_MACRO_addTypesToDict(d, KX_FALSE, SCA_ILogicBrick::KX_FALSE);
/* 2. Property sensor */
KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_EQUAL, SCA_PropertySensor::KX_PROPSENSOR_EQUAL);
KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_NOTEQUAL, SCA_PropertySensor::KX_PROPSENSOR_NOTEQUAL);
KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_INTERVAL, SCA_PropertySensor::KX_PROPSENSOR_INTERVAL);
KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_CHANGED, SCA_PropertySensor::KX_PROPSENSOR_CHANGED);
KX_MACRO_addTypesToDict(d, KX_PROPSENSOR_EXPRESSION, SCA_PropertySensor::KX_PROPSENSOR_EXPRESSION);
/* 3. Constraint actuator */
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_LOCX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCX);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_LOCY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCY);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_LOCZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCZ);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ROTX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ROTX);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ROTY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ROTY);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ROTZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ROTZ);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRPX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRPX);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRPY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRPY);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRPY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRPY);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRNX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRNX);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRNY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRNY);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_DIRNY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DIRNY);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ORIX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ORIX);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ORIY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ORIY);
KX_MACRO_addTypesToDict(d, KX_CONSTRAINTACT_ORIZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_ORIZ);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_FHPX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHPX);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_FHPY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHPY);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_FHPZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHPZ);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_FHNX, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHNX);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_FHNY, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHNY);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_FHNZ, KX_ConstraintActuator::KX_ACT_CONSTRAINT_FHNZ);
/* 4. Ipo actuator, simple part */
KX_MACRO_addTypesToDict(d, KX_IPOACT_PLAY, KX_IpoActuator::KX_ACT_IPO_PLAY);
KX_MACRO_addTypesToDict(d, KX_IPOACT_PINGPONG, KX_IpoActuator::KX_ACT_IPO_PINGPONG);
KX_MACRO_addTypesToDict(d, KX_IPOACT_FLIPPER, KX_IpoActuator::KX_ACT_IPO_FLIPPER);
KX_MACRO_addTypesToDict(d, KX_IPOACT_LOOPSTOP, KX_IpoActuator::KX_ACT_IPO_LOOPSTOP);
KX_MACRO_addTypesToDict(d, KX_IPOACT_LOOPEND, KX_IpoActuator::KX_ACT_IPO_LOOPEND);
KX_MACRO_addTypesToDict(d, KX_IPOACT_FROM_PROP,KX_IpoActuator::KX_ACT_IPO_FROM_PROP);
/* 5. Random distribution types */
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_BOOL_CONST, SCA_RandomActuator::KX_RANDOMACT_BOOL_CONST);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_BOOL_UNIFORM, SCA_RandomActuator::KX_RANDOMACT_BOOL_UNIFORM);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_BOOL_BERNOUILLI, SCA_RandomActuator::KX_RANDOMACT_BOOL_BERNOUILLI);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_INT_CONST, SCA_RandomActuator::KX_RANDOMACT_INT_CONST);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_INT_UNIFORM, SCA_RandomActuator::KX_RANDOMACT_INT_UNIFORM);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_INT_POISSON, SCA_RandomActuator::KX_RANDOMACT_INT_POISSON);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_CONST, SCA_RandomActuator::KX_RANDOMACT_FLOAT_CONST);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_UNIFORM, SCA_RandomActuator::KX_RANDOMACT_FLOAT_UNIFORM);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_NORMAL, SCA_RandomActuator::KX_RANDOMACT_FLOAT_NORMAL);
KX_MACRO_addTypesToDict(d, KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL, SCA_RandomActuator::KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL);
/* 6. Sound actuator */
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYSTOP, KX_SoundActuator::KX_SOUNDACT_PLAYSTOP);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYEND, KX_SoundActuator::KX_SOUNDACT_PLAYEND);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPSTOP, KX_SoundActuator::KX_SOUNDACT_LOOPSTOP);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPEND, KX_SoundActuator::KX_SOUNDACT_LOOPEND);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP);
/* 7. Action actuator */
KX_MACRO_addTypesToDict(d, KX_ACTIONACT_PLAY, ACT_ACTION_PLAY);
KX_MACRO_addTypesToDict(d, KX_ACTIONACT_FLIPPER, ACT_ACTION_FLIPPER);
KX_MACRO_addTypesToDict(d, KX_ACTIONACT_LOOPSTOP, ACT_ACTION_LOOP_STOP);
KX_MACRO_addTypesToDict(d, KX_ACTIONACT_LOOPEND, ACT_ACTION_LOOP_END);
KX_MACRO_addTypesToDict(d, KX_ACTIONACT_PROPERTY, ACT_ACTION_FROM_PROP);
/*8. GL_BlendFunc */
KX_MACRO_addTypesToDict(d, BL_ZERO, GL_ZERO);
KX_MACRO_addTypesToDict(d, BL_ONE, GL_ONE);
KX_MACRO_addTypesToDict(d, BL_SRC_COLOR, GL_SRC_COLOR);
KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR);
KX_MACRO_addTypesToDict(d, BL_DST_COLOR, GL_DST_COLOR);
KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_DST_COLOR);
KX_MACRO_addTypesToDict(d, BL_SRC_ALPHA, GL_SRC_ALPHA);
KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
KX_MACRO_addTypesToDict(d, BL_DST_ALPHA, GL_DST_ALPHA);
KX_MACRO_addTypesToDict(d, BL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA);
KX_MACRO_addTypesToDict(d, BL_SRC_ALPHA_SATURATE, GL_SRC_ALPHA_SATURATE);
/* 9. UniformTypes */
KX_MACRO_addTypesToDict(d, SHD_TANGENT, BL_Shader::SHD_TANGENT);
KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX, BL_Shader::MODELVIEWMATRIX);
KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX_TRANSPOSE, BL_Shader::MODELVIEWMATRIX_TRANSPOSE);
KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX_INVERSE, BL_Shader::MODELVIEWMATRIX_INVERSE);
KX_MACRO_addTypesToDict(d, MODELVIEWMATRIX_INVERSETRANSPOSE, BL_Shader::MODELVIEWMATRIX_INVERSETRANSPOSE);
KX_MACRO_addTypesToDict(d, MODELMATRIX, BL_Shader::MODELMATRIX);
KX_MACRO_addTypesToDict(d, MODELMATRIX_TRANSPOSE, BL_Shader::MODELMATRIX_TRANSPOSE);
KX_MACRO_addTypesToDict(d, MODELMATRIX_INVERSE, BL_Shader::MODELMATRIX_INVERSE);
KX_MACRO_addTypesToDict(d, MODELMATRIX_INVERSETRANSPOSE, BL_Shader::MODELMATRIX_INVERSETRANSPOSE);
KX_MACRO_addTypesToDict(d, VIEWMATRIX, BL_Shader::VIEWMATRIX);
KX_MACRO_addTypesToDict(d, VIEWMATRIX_TRANSPOSE, BL_Shader::VIEWMATRIX_TRANSPOSE);
KX_MACRO_addTypesToDict(d, VIEWMATRIX_INVERSE, BL_Shader::VIEWMATRIX_INVERSE);
KX_MACRO_addTypesToDict(d, VIEWMATRIX_INVERSETRANSPOSE, BL_Shader::VIEWMATRIX_INVERSETRANSPOSE);
KX_MACRO_addTypesToDict(d, CAM_POS, BL_Shader::CAM_POS);
KX_MACRO_addTypesToDict(d, CONSTANT_TIMER, BL_Shader::CONSTANT_TIMER);
/* 10 state actuator */
KX_MACRO_addTypesToDict(d, KX_STATE1, (1<<0));
KX_MACRO_addTypesToDict(d, KX_STATE2, (1<<1));
KX_MACRO_addTypesToDict(d, KX_STATE3, (1<<2));
KX_MACRO_addTypesToDict(d, KX_STATE4, (1<<3));
KX_MACRO_addTypesToDict(d, KX_STATE5, (1<<4));
KX_MACRO_addTypesToDict(d, KX_STATE6, (1<<5));
KX_MACRO_addTypesToDict(d, KX_STATE7, (1<<6));
KX_MACRO_addTypesToDict(d, KX_STATE8, (1<<7));
KX_MACRO_addTypesToDict(d, KX_STATE9, (1<<8));
KX_MACRO_addTypesToDict(d, KX_STATE10, (1<<9));
KX_MACRO_addTypesToDict(d, KX_STATE11, (1<<10));
KX_MACRO_addTypesToDict(d, KX_STATE12, (1<<11));
KX_MACRO_addTypesToDict(d, KX_STATE13, (1<<12));
KX_MACRO_addTypesToDict(d, KX_STATE14, (1<<13));
KX_MACRO_addTypesToDict(d, KX_STATE15, (1<<14));
KX_MACRO_addTypesToDict(d, KX_STATE16, (1<<15));
KX_MACRO_addTypesToDict(d, KX_STATE17, (1<<16));
KX_MACRO_addTypesToDict(d, KX_STATE18, (1<<17));
KX_MACRO_addTypesToDict(d, KX_STATE19, (1<<18));
KX_MACRO_addTypesToDict(d, KX_STATE20, (1<<19));
KX_MACRO_addTypesToDict(d, KX_STATE21, (1<<20));
KX_MACRO_addTypesToDict(d, KX_STATE22, (1<<21));
KX_MACRO_addTypesToDict(d, KX_STATE23, (1<<22));
KX_MACRO_addTypesToDict(d, KX_STATE24, (1<<23));
KX_MACRO_addTypesToDict(d, KX_STATE25, (1<<24));
KX_MACRO_addTypesToDict(d, KX_STATE26, (1<<25));
KX_MACRO_addTypesToDict(d, KX_STATE27, (1<<26));
KX_MACRO_addTypesToDict(d, KX_STATE28, (1<<27));
KX_MACRO_addTypesToDict(d, KX_STATE29, (1<<28));
KX_MACRO_addTypesToDict(d, KX_STATE30, (1<<29));
/* Radar Sensor */
KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_POS_X, KX_RadarSensor::KX_RADAR_AXIS_POS_X);
KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_POS_Y, KX_RadarSensor::KX_RADAR_AXIS_POS_Y);
KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_POS_Z, KX_RadarSensor::KX_RADAR_AXIS_POS_Z);
KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_NEG_X, KX_RadarSensor::KX_RADAR_AXIS_NEG_Y);
KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_NEG_Y, KX_RadarSensor::KX_RADAR_AXIS_NEG_X);
KX_MACRO_addTypesToDict(d, KX_RADAR_AXIS_NEG_Z, KX_RadarSensor::KX_RADAR_AXIS_NEG_Z);
/* Ray Sensor */
KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_POS_X, KX_RaySensor::KX_RAY_AXIS_POS_X);
KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_POS_Y, KX_RaySensor::KX_RAY_AXIS_POS_Y);
KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_POS_Z, KX_RaySensor::KX_RAY_AXIS_POS_Z);
KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_NEG_X, KX_RaySensor::KX_RAY_AXIS_NEG_Y);
KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_NEG_Y, KX_RaySensor::KX_RAY_AXIS_NEG_X);
KX_MACRO_addTypesToDict(d, KX_RAY_AXIS_NEG_Z, KX_RaySensor::KX_RAY_AXIS_NEG_Z);
/* Dynamic actuator */
KX_MACRO_addTypesToDict(d, KX_DYN_RESTORE_DYNAMICS, KX_SCA_DynamicActuator::KX_DYN_RESTORE_DYNAMICS);
KX_MACRO_addTypesToDict(d, KX_DYN_DISABLE_DYNAMICS, KX_SCA_DynamicActuator::KX_DYN_DISABLE_DYNAMICS);
KX_MACRO_addTypesToDict(d, KX_DYN_ENABLE_RIGID_BODY, KX_SCA_DynamicActuator::KX_DYN_ENABLE_RIGID_BODY);
KX_MACRO_addTypesToDict(d, KX_DYN_DISABLE_RIGID_BODY, KX_SCA_DynamicActuator::KX_DYN_DISABLE_RIGID_BODY);
KX_MACRO_addTypesToDict(d, KX_DYN_SET_MASS, KX_SCA_DynamicActuator::KX_DYN_SET_MASS);
/* Input & Mouse Sensor */
KX_MACRO_addTypesToDict(d, KX_INPUT_NONE, SCA_InputEvent::KX_NO_INPUTSTATUS);
KX_MACRO_addTypesToDict(d, KX_INPUT_JUST_ACTIVATED, SCA_InputEvent::KX_JUSTACTIVATED);
KX_MACRO_addTypesToDict(d, KX_INPUT_ACTIVE, SCA_InputEvent::KX_ACTIVE);
KX_MACRO_addTypesToDict(d, KX_INPUT_JUST_RELEASED, SCA_InputEvent::KX_JUSTRELEASED);
KX_MACRO_addTypesToDict(d, KX_MOUSE_BUT_LEFT, SCA_IInputDevice::KX_LEFTMOUSE);
KX_MACRO_addTypesToDict(d, KX_MOUSE_BUT_MIDDLE, SCA_IInputDevice::KX_MIDDLEMOUSE);
KX_MACRO_addTypesToDict(d, KX_MOUSE_BUT_RIGHT, SCA_IInputDevice::KX_RIGHTMOUSE);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_ENABLED, RAS_2DFilterManager::RAS_2DFILTER_ENABLED);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_DISABLED, RAS_2DFilterManager::RAS_2DFILTER_DISABLED);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_NOFILTER, RAS_2DFilterManager::RAS_2DFILTER_NOFILTER);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_MOTIONBLUR, RAS_2DFilterManager::RAS_2DFILTER_MOTIONBLUR);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_BLUR, RAS_2DFilterManager::RAS_2DFILTER_BLUR);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_SHARPEN, RAS_2DFilterManager::RAS_2DFILTER_SHARPEN);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_DILATION, RAS_2DFilterManager::RAS_2DFILTER_DILATION);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_EROSION, RAS_2DFilterManager::RAS_2DFILTER_EROSION);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_LAPLACIAN, RAS_2DFilterManager::RAS_2DFILTER_LAPLACIAN);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_SOBEL, RAS_2DFilterManager::RAS_2DFILTER_SOBEL);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_PREWITT, RAS_2DFilterManager::RAS_2DFILTER_PREWITT);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_GRAYSCALE, RAS_2DFilterManager::RAS_2DFILTER_GRAYSCALE);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_SEPIA, RAS_2DFilterManager::RAS_2DFILTER_SEPIA);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_INVERT, RAS_2DFilterManager::RAS_2DFILTER_INVERT);
KX_MACRO_addTypesToDict(d, RAS_2DFILTER_CUSTOMFILTER, RAS_2DFilterManager::RAS_2DFILTER_CUSTOMFILTER);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYSTOP, KX_SoundActuator::KX_SOUNDACT_PLAYSTOP);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_PLAYEND, KX_SoundActuator::KX_SOUNDACT_PLAYEND);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPSTOP, KX_SoundActuator::KX_SOUNDACT_LOOPSTOP);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPEND, KX_SoundActuator:: KX_SOUNDACT_LOOPEND);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL);
KX_MACRO_addTypesToDict(d, KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP, KX_SoundActuator::KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP);
KX_MACRO_addTypesToDict(d, KX_STATE_OP_CPY, KX_StateActuator::OP_CPY);
KX_MACRO_addTypesToDict(d, KX_STATE_OP_SET, KX_StateActuator::OP_SET);
KX_MACRO_addTypesToDict(d, KX_STATE_OP_CLR, KX_StateActuator::OP_CLR);
KX_MACRO_addTypesToDict(d, KX_STATE_OP_NEG, KX_StateActuator::OP_NEG);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_NORMAL, KX_ConstraintActuator::KX_ACT_CONSTRAINT_NORMAL);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_MATERIAL, KX_ConstraintActuator::KX_ACT_CONSTRAINT_MATERIAL);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_PERMANENT, KX_ConstraintActuator::KX_ACT_CONSTRAINT_PERMANENT);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_DISTANCE, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DISTANCE);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_LOCAL, KX_ConstraintActuator::KX_ACT_CONSTRAINT_LOCAL);
KX_MACRO_addTypesToDict(d, KX_ACT_CONSTRAINT_DOROTFH, KX_ConstraintActuator::KX_ACT_CONSTRAINT_DOROTFH);
/* Game Actuator Modes */
KX_MACRO_addTypesToDict(d, KX_GAME_LOAD, KX_GameActuator::KX_GAME_LOAD);
KX_MACRO_addTypesToDict(d, KX_GAME_START, KX_GameActuator::KX_GAME_START);
KX_MACRO_addTypesToDict(d, KX_GAME_RESTART, KX_GameActuator::KX_GAME_RESTART);
KX_MACRO_addTypesToDict(d, KX_GAME_QUIT, KX_GameActuator::KX_GAME_QUIT);
KX_MACRO_addTypesToDict(d, KX_GAME_SAVECFG, KX_GameActuator::KX_GAME_SAVECFG);
KX_MACRO_addTypesToDict(d, KX_GAME_LOADCFG, KX_GameActuator::KX_GAME_LOADCFG);
/* Scene Actuator Modes */
KX_MACRO_addTypesToDict(d, KX_SCENE_RESTART, KX_SceneActuator::KX_SCENE_RESTART);
KX_MACRO_addTypesToDict(d, KX_SCENE_SET_SCENE, KX_SceneActuator::KX_SCENE_SET_SCENE);
KX_MACRO_addTypesToDict(d, KX_SCENE_SET_CAMERA, KX_SceneActuator::KX_SCENE_SET_CAMERA);
KX_MACRO_addTypesToDict(d, KX_SCENE_ADD_FRONT_SCENE, KX_SceneActuator::KX_SCENE_ADD_FRONT_SCENE);
KX_MACRO_addTypesToDict(d, KX_SCENE_ADD_BACK_SCENE, KX_SceneActuator::KX_SCENE_ADD_BACK_SCENE);
KX_MACRO_addTypesToDict(d, KX_SCENE_REMOVE_SCENE, KX_SceneActuator::KX_SCENE_REMOVE_SCENE);
KX_MACRO_addTypesToDict(d, KX_SCENE_SUSPEND, KX_SceneActuator::KX_SCENE_SUSPEND);
KX_MACRO_addTypesToDict(d, KX_SCENE_RESUME, KX_SceneActuator::KX_SCENE_RESUME);
/* Parent Actuator Modes */
KX_MACRO_addTypesToDict(d, KX_PARENT_SET, KX_ParentActuator::KX_PARENT_SET);
KX_MACRO_addTypesToDict(d, KX_PARENT_REMOVE, KX_ParentActuator::KX_PARENT_REMOVE);
// Check for errors
if (PyErr_Occurred())
{
Py_FatalError("can't initialize module GameLogic");
}
return m;
}
// Python Sandbox code
// override builtin functions import() and open()
PyObject *KXpy_open(PyObject *self, PyObject *args) {
PyErr_SetString(PyExc_RuntimeError, "Sandbox: open() function disabled!\nGame Scripts should not use this function.");
return NULL;
}
PyObject *KXpy_file(PyObject *self, PyObject *args) {
PyErr_SetString(PyExc_RuntimeError, "Sandbox: file() function disabled!\nGame Scripts should not use this function.");
return NULL;
}
PyObject *KXpy_execfile(PyObject *self, PyObject *args) {
PyErr_SetString(PyExc_RuntimeError, "Sandbox: execfile() function disabled!\nGame Scripts should not use this function.");
return NULL;
}
PyObject *KXpy_compile(PyObject *self, PyObject *args) {
PyErr_SetString(PyExc_RuntimeError, "Sandbox: compile() function disabled!\nGame Scripts should not use this function.");
return NULL;
}
PyObject *KXpy_import(PyObject *self, PyObject *args)
{
char *name;
int found;
PyObject *globals = NULL;
PyObject *locals = NULL;
PyObject *fromlist = NULL;
PyObject *l, *m, *n;
#if (PY_VERSION_HEX >= 0x02060000)
int dummy_val; /* what does this do?*/
if (!PyArg_ParseTuple(args, "s|OOOi:m_import",
&name, &globals, &locals, &fromlist, &dummy_val))
return NULL;
#else
if (!PyArg_ParseTuple(args, "s|OOO:m_import",
&name, &globals, &locals, &fromlist))
return NULL;
#endif
/* check for builtin modules */
m = PyImport_AddModule("sys");
l = PyObject_GetAttrString(m, "builtin_module_names");
n = PyString_FromString(name);
if (PySequence_Contains(l, n)) {
return PyImport_ImportModuleEx(name, globals, locals, fromlist);
}
/* quick hack for GamePython modules
TODO: register builtin modules properly by ExtendInittab */
if (!strcmp(name, "GameLogic") || !strcmp(name, "GameKeys") || !strcmp(name, "PhysicsConstraints") ||
!strcmp(name, "Rasterizer") || !strcmp(name, "Mathutils") || !strcmp(name, "BGL") || !strcmp(name, "Geometry")) {
return PyImport_ImportModuleEx(name, globals, locals, fromlist);
}
/* Import blender texts as python modules */
m= bpy_text_import(name, &found);
if (m)
return m;
if(found==0) /* if its found but could not import then it has its own error */
PyErr_Format(PyExc_ImportError, "Import of external Module %.20s not allowed.", name);
return NULL;
}
PyObject *KXpy_reload(PyObject *self, PyObject *args) {
/* Used to be sandboxed, bettet to allow importing of internal text only */
#if 0
PyErr_SetString(PyExc_RuntimeError, "Sandbox: reload() function disabled!\nGame Scripts should not use this function.");
return NULL;
#endif
int found;
PyObject *module = NULL;
PyObject *newmodule = NULL;
/* check for a module arg */
if( !PyArg_ParseTuple( args, "O:bpy_reload_meth", &module ) )
return NULL;
newmodule= bpy_text_reimport( module, &found );
if (newmodule)
return newmodule;
if (found==0) /* if its found but could not import then it has its own error */
PyErr_SetString(PyExc_ImportError, "reload(module): failed to reload from blenders internal text");
return newmodule;
}
/* override python file type functions */
#if 0
static int
file_init(PyObject *self, PyObject *args, PyObject *kwds)
{
KXpy_file(NULL, NULL);
return -1;
}
static PyObject *
file_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
return KXpy_file(NULL, NULL);
}
#endif
static PyMethodDef meth_open[] = {{ "open", KXpy_open, METH_VARARGS, "(disabled)"}};
static PyMethodDef meth_reload[] = {{ "reload", KXpy_reload, METH_VARARGS, "(disabled)"}};
static PyMethodDef meth_file[] = {{ "file", KXpy_file, METH_VARARGS, "(disabled)"}};
static PyMethodDef meth_execfile[] = {{ "execfile", KXpy_execfile, METH_VARARGS, "(disabled)"}};
static PyMethodDef meth_compile[] = {{ "compile", KXpy_compile, METH_VARARGS, "(disabled)"}};
static PyMethodDef meth_import[] = {{ "import", KXpy_import, METH_VARARGS, "our own import"}};
//static PyObject *g_oldopen = 0;
//static PyObject *g_oldimport = 0;
//static int g_security = 0;
void setSandbox(TPythonSecurityLevel level)
{
PyObject *m = PyImport_AddModule("__builtin__");
PyObject *d = PyModule_GetDict(m);
PyObject *item;
switch (level) {
case psl_Highest:
//if (!g_security) {
//g_oldopen = PyDict_GetItemString(d, "open");
// functions we cant trust
PyDict_SetItemString(d, "open", item=PyCFunction_New(meth_open, NULL)); Py_DECREF(item);
PyDict_SetItemString(d, "reload", item=PyCFunction_New(meth_reload, NULL)); Py_DECREF(item);
PyDict_SetItemString(d, "file", item=PyCFunction_New(meth_file, NULL)); Py_DECREF(item);
PyDict_SetItemString(d, "execfile", item=PyCFunction_New(meth_execfile, NULL)); Py_DECREF(item);
PyDict_SetItemString(d, "compile", item=PyCFunction_New(meth_compile, NULL)); Py_DECREF(item);
// our own import
PyDict_SetItemString(d, "__import__", PyCFunction_New(meth_import, NULL));
//g_security = level;
// Overiding file dosnt stop it being accessed if your sneaky
// f = [ t for t in (1).__class__.__mro__[-1].__subclasses__() if t.__name__ == 'file'][0]('/some_file.txt', 'w')
// f.write('...')
// so overwrite the file types functions. be very careful here still, since python uses python.
// ps - python devs frown deeply upon this.
/* this could mess up pythons internals, if we are serious about sandboxing
* issues like the one above need to be solved, possibly modify __subclasses__ is safer? */
#if 0
PyFile_Type.tp_init = file_init;
PyFile_Type.tp_new = file_new;
#endif
//}
break;
/*
case psl_Lowest:
if (g_security) {
PyDict_SetItemString(d, "open", g_oldopen);
PyDict_SetItemString(d, "__import__", g_oldimport);
g_security = level;
}
*/
default:
/* Allow importing internal text, from bpy_internal_import.py */
PyDict_SetItemString(d, "reload", item=PyCFunction_New(bpy_reload_meth, NULL)); Py_DECREF(item);
PyDict_SetItemString(d, "__import__", item=PyCFunction_New(bpy_import_meth, NULL)); Py_DECREF(item);
break;
}
}
/* Explanation of
*
* - backupPySysPath() : stores sys.path in gp_OrigPythonSysPath
* - initPySysPath(main) : initializes the blendfile and library paths
* - restorePySysPath() : restores sys.path from gp_OrigPythonSysPath
*
* These exist so the current blend dir "//" can always be used to import modules from.
* the reason we need a few functions for this is that python is not only used by the game engine
* so we cant just add to sys.path all the time, it would leave pythons state in a mess.
* It would also be incorrect since loading blend files for new levels etc would alwasy add to sys.path
*
* To play nice with blenders python, the sys.path is backed up and the current blendfile along
* with all its lib paths are added to the sys path.
* When loading a new blendfile, the original sys.path is restored and the new paths are added over the top.
*/
/**
* So we can have external modules mixed with our blend files.
*/
static void backupPySysPath(void)
{
PyObject *sys_path= PySys_GetObject("path"); /* should never fail */
/* just incase its set */
Py_XDECREF(gp_OrigPythonSysPath);
gp_OrigPythonSysPath= NULL;
gp_OrigPythonSysPath = PyList_GetSlice(sys_path, 0, INT_MAX); /* copy the list */
}
/* for initPySysPath only,
* takes a blend path and adds a scripts dir from it
*
* "/home/me/foo.blend" -> "/home/me/scripts"
*/
static void initPySysPath__append(PyObject *sys_path, char *filename)
{
PyObject *item;
char expanded[FILE_MAXDIR + FILE_MAXFILE] = "//";
BLI_convertstringcode(expanded, filename);
item= PyString_FromString(expanded);
if(PySequence_Index(sys_path, item) == -1) {
PyList_Insert(sys_path, 0, item);
}
Py_DECREF(item);
}
static void initPySysPath(Main *maggie)
{
PyObject *sys_path= PySys_GetObject("path"); /* should never fail */
if (gp_OrigPythonSysPath==NULL) {
/* backup */
backupPySysPath();
}
else {
/* get the original sys path when the BGE started */
PyList_SetSlice(sys_path, 0, INT_MAX, gp_OrigPythonSysPath);
}
Library *lib= (Library *)maggie->library.first;
while(lib) {
initPySysPath__append(sys_path, lib->name);
lib= (Library *)lib->id.next;
}
initPySysPath__append(sys_path, gp_GamePythonPath);
// fprintf(stderr, "\nNew Path: %d ", PyList_Size(sys_path));
// PyObject_Print(sys_path, stderr, 0);
}
static void restorePySysPath(void)
{
if (gp_OrigPythonSysPath==NULL)
return;
PyObject *sys_path= PySys_GetObject("path"); /* should never fail */
PyList_SetSlice(sys_path, 0, INT_MAX, gp_OrigPythonSysPath);
Py_DECREF(gp_OrigPythonSysPath);
gp_OrigPythonSysPath= NULL;
// fprintf(stderr, "\nRestore Path: %d ", PyList_Size(sys_path));
// PyObject_Print(sys_path, stderr, 0);
}
/**
* Python is not initialised.
*/
PyObject* initGamePlayerPythonScripting(const STR_String& progname, TPythonSecurityLevel level, Main *maggie, int argc, char** argv)
{
/* Yet another gotcha in the py api
* Cant run PySys_SetArgv more then once because this adds the
* binary dir to the sys.path each time.
* Id have thaught python being totally restarted would make this ok but
* somehow it remembers the sys.path - Campbell
*/
static bool first_time = true;
#if (PY_VERSION_HEX < 0x03000000)
STR_String pname = progname;
Py_SetProgramName(pname.Ptr());
#endif
Py_NoSiteFlag=1;
Py_FrozenFlag=1;
Py_Initialize();
#if (PY_VERSION_HEX < 0x03000000)
if(argv && first_time) /* browser plugins dont currently set this */
PySys_SetArgv(argc, argv);
#endif
//importBlenderModules()
setSandbox(level);
initPyTypes();
bpy_import_main_set(maggie);
initPySysPath(maggie);
first_time = false;
PyObjectPlus::ClearDeprecationWarning();
PyObject* moduleobj = PyImport_AddModule("__main__");
return PyModule_GetDict(moduleobj);
}
void exitGamePlayerPythonScripting()
{
//clearGameModules(); // were closing python anyway
/* since python restarts we cant let the python backup of the sys.path hang around in a global pointer */
restorePySysPath(); /* get back the original sys.path and clear the backup */
Py_Finalize();
bpy_import_main_set(NULL);
PyObjectPlus::ClearDeprecationWarning();
}
/**
* Python is already initialized.
*/
PyObject* initGamePythonScripting(const STR_String& progname, TPythonSecurityLevel level, Main *maggie)
{
#if (PY_VERSION_HEX < 0x03000000)
STR_String pname = progname;
Py_SetProgramName(pname.Ptr());
#endif
Py_NoSiteFlag=1;
Py_FrozenFlag=1;
setSandbox(level);
initPyTypes();
bpy_import_main_set(maggie);
initPySysPath(maggie);
/* clear user defined modules that may contain data from the last run */
clearGameModules();
PyObjectPlus::NullDeprecationWarning();
PyObject* moduleobj = PyImport_AddModule("__main__");
return PyModule_GetDict(moduleobj);
}
static void clearModule(PyObject *modules, const char *name)
{
PyObject *mod= PyDict_GetItemString(modules, name);
if (mod==NULL)
return;
PyDict_Clear(PyModule_GetDict(mod)); /* incase there are any circular refs */
PyDict_DelItemString(modules, name);
}
static void clearGameModules()
{
/* references to invalid BGE data is better supported in 2.49+ so dont clear dicts */
#if 0
/* Note, user modules could still reference these modules
* but since the dict's are cleared their members wont be accessible */
PyObject *modules= PySys_GetObject((char *)"modules");
clearModule(modules, "Expression");
clearModule(modules, "CValue");
clearModule(modules, "PhysicsConstraints");
clearModule(modules, "GameLogic");
clearModule(modules, "Rasterizer");
clearModule(modules, "GameKeys");
clearModule(modules, "VideoTexture");
clearModule(modules, "Mathutils");
clearModule(modules, "Geometry");
clearModule(modules, "BGL");
PyErr_Clear(); // incase some of these were alredy removed.
#endif
/* clear user defined modules, arg '1' for clear external py modules too */
bpy_text_clear_modules(1);
}
void exitGamePythonScripting()
{
clearGameModules();
restorePySysPath(); /* get back the original sys.path and clear the backup */
bpy_import_main_set(NULL);
PyObjectPlus::ClearDeprecationWarning();
}
#if (PY_VERSION_HEX >= 0x03000000)
static struct PyModuleDef Rasterizer_module_def = {
{}, /* m_base */
"Rasterizer", /* m_name */
Rasterizer_module_documentation, /* m_doc */
0, /* m_size */
rasterizer_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
#endif
PyObject* initRasterizer(RAS_IRasterizer* rasty,RAS_ICanvas* canvas)
{
gp_Canvas = canvas;
gp_Rasterizer = rasty;
PyObject* m;
PyObject* d;
PyObject* item;
/* Use existing module where possible
* be careful not to init any runtime vars after this */
m = PyImport_ImportModule( "Rasterizer" );
if(m) {
Py_DECREF(m);
return m;
}
else {
PyErr_Clear();
// Create the module and add the functions
#if (PY_VERSION_HEX >= 0x03000000)
m = PyModule_Create(&Rasterizer_module_def);
#else
m = Py_InitModule4("Rasterizer", rasterizer_methods,
Rasterizer_module_documentation,
(PyObject*)NULL,PYTHON_API_VERSION);
#endif
}
// Add some symbolic constants to the module
d = PyModule_GetDict(m);
ErrorObject = PyString_FromString("Rasterizer.error");
PyDict_SetItemString(d, "error", ErrorObject);
Py_DECREF(ErrorObject);
/* needed for get/setMaterialType */
KX_MACRO_addTypesToDict(d, KX_TEXFACE_MATERIAL, KX_TEXFACE_MATERIAL);
KX_MACRO_addTypesToDict(d, KX_BLENDER_MULTITEX_MATERIAL, KX_BLENDER_MULTITEX_MATERIAL);
KX_MACRO_addTypesToDict(d, KX_BLENDER_GLSL_MATERIAL, KX_BLENDER_GLSL_MATERIAL);
// XXXX Add constants here
// Check for errors
if (PyErr_Occurred())
{
Py_FatalError("can't initialize module Rasterizer");
}
return d;
}
/* ------------------------------------------------------------------------- */
/* GameKeys: symbolic constants for key mapping */
/* ------------------------------------------------------------------------- */
static char GameKeys_module_documentation[] =
"This modules provides defines for key-codes"
;
static char gPyEventToString_doc[] =
"EventToString(event) - Take a valid event from the GameKeys module or Keyboard Sensor and return a name"
;
static PyObject* gPyEventToString(PyObject*, PyObject* value)
{
PyObject* mod, *dict, *key, *val, *ret = NULL;
Py_ssize_t pos = 0;
mod = PyImport_ImportModule( "GameKeys" );
if (!mod)
return NULL;
dict = PyModule_GetDict(mod);
while (PyDict_Next(dict, &pos, &key, &val)) {
#if (PY_VERSION_HEX >= 0x03000000)
if (PyObject_RichCompareBool(value, val, Py_EQ)) {
#else
if (PyObject_Compare(value, val)==0) {
#endif
ret = key;
break;
}
}
PyErr_Clear(); // incase there was an error clearing
Py_DECREF(mod);
if (!ret) PyErr_SetString(PyExc_ValueError, "GameKeys.EventToString(int): expected a valid int keyboard event");
else Py_INCREF(ret);
return ret;
}
static char gPyEventToCharacter_doc[] =
"EventToCharacter(event, is_shift) - Take a valid event from the GameKeys module or Keyboard Sensor and return a character"
;
static PyObject* gPyEventToCharacter(PyObject*, PyObject* args)
{
int event, shift;
if (!PyArg_ParseTuple(args,"ii:EventToCharacter", &event, &shift))
return NULL;
if(IsPrintable(event)) {
char ch[2] = {'\0', '\0'};
ch[0] = ToCharacter(event, (bool)shift);
return PyString_FromString(ch);
}
else {
return PyString_FromString("");
}
}
static struct PyMethodDef gamekeys_methods[] = {
{"EventToCharacter", (PyCFunction)gPyEventToCharacter, METH_VARARGS, (PY_METHODCHAR)gPyEventToCharacter_doc},
{"EventToString", (PyCFunction)gPyEventToString, METH_O, (PY_METHODCHAR)gPyEventToString_doc},
{ NULL, (PyCFunction) NULL, 0, NULL }
};
#if (PY_VERSION_HEX >= 0x03000000)
static struct PyModuleDef GameKeys_module_def = {
{}, /* m_base */
"GameKeys", /* m_name */
GameKeys_module_documentation, /* m_doc */
0, /* m_size */
gamekeys_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
#endif
PyObject* initGameKeys()
{
PyObject* m;
PyObject* d;
PyObject* item;
/* Use existing module where possible */
m = PyImport_ImportModule( "GameKeys" );
if(m) {
Py_DECREF(m);
return m;
}
else {
PyErr_Clear();
// Create the module and add the functions
#if (PY_VERSION_HEX >= 0x03000000)
m = PyModule_Create(&GameKeys_module_def);
#else
m = Py_InitModule4("GameKeys", gamekeys_methods,
GameKeys_module_documentation,
(PyObject*)NULL,PYTHON_API_VERSION);
#endif
}
// Add some symbolic constants to the module
d = PyModule_GetDict(m);
// XXXX Add constants here
KX_MACRO_addTypesToDict(d, AKEY, SCA_IInputDevice::KX_AKEY);
KX_MACRO_addTypesToDict(d, BKEY, SCA_IInputDevice::KX_BKEY);
KX_MACRO_addTypesToDict(d, CKEY, SCA_IInputDevice::KX_CKEY);
KX_MACRO_addTypesToDict(d, DKEY, SCA_IInputDevice::KX_DKEY);
KX_MACRO_addTypesToDict(d, EKEY, SCA_IInputDevice::KX_EKEY);
KX_MACRO_addTypesToDict(d, FKEY, SCA_IInputDevice::KX_FKEY);
KX_MACRO_addTypesToDict(d, GKEY, SCA_IInputDevice::KX_GKEY);
KX_MACRO_addTypesToDict(d, HKEY, SCA_IInputDevice::KX_HKEY);
KX_MACRO_addTypesToDict(d, IKEY, SCA_IInputDevice::KX_IKEY);
KX_MACRO_addTypesToDict(d, JKEY, SCA_IInputDevice::KX_JKEY);
KX_MACRO_addTypesToDict(d, KKEY, SCA_IInputDevice::KX_KKEY);
KX_MACRO_addTypesToDict(d, LKEY, SCA_IInputDevice::KX_LKEY);
KX_MACRO_addTypesToDict(d, MKEY, SCA_IInputDevice::KX_MKEY);
KX_MACRO_addTypesToDict(d, NKEY, SCA_IInputDevice::KX_NKEY);
KX_MACRO_addTypesToDict(d, OKEY, SCA_IInputDevice::KX_OKEY);
KX_MACRO_addTypesToDict(d, PKEY, SCA_IInputDevice::KX_PKEY);
KX_MACRO_addTypesToDict(d, QKEY, SCA_IInputDevice::KX_QKEY);
KX_MACRO_addTypesToDict(d, RKEY, SCA_IInputDevice::KX_RKEY);
KX_MACRO_addTypesToDict(d, SKEY, SCA_IInputDevice::KX_SKEY);
KX_MACRO_addTypesToDict(d, TKEY, SCA_IInputDevice::KX_TKEY);
KX_MACRO_addTypesToDict(d, UKEY, SCA_IInputDevice::KX_UKEY);
KX_MACRO_addTypesToDict(d, VKEY, SCA_IInputDevice::KX_VKEY);
KX_MACRO_addTypesToDict(d, WKEY, SCA_IInputDevice::KX_WKEY);
KX_MACRO_addTypesToDict(d, XKEY, SCA_IInputDevice::KX_XKEY);
KX_MACRO_addTypesToDict(d, YKEY, SCA_IInputDevice::KX_YKEY);
KX_MACRO_addTypesToDict(d, ZKEY, SCA_IInputDevice::KX_ZKEY);
KX_MACRO_addTypesToDict(d, ZEROKEY, SCA_IInputDevice::KX_ZEROKEY);
KX_MACRO_addTypesToDict(d, ONEKEY, SCA_IInputDevice::KX_ONEKEY);
KX_MACRO_addTypesToDict(d, TWOKEY, SCA_IInputDevice::KX_TWOKEY);
KX_MACRO_addTypesToDict(d, THREEKEY, SCA_IInputDevice::KX_THREEKEY);
KX_MACRO_addTypesToDict(d, FOURKEY, SCA_IInputDevice::KX_FOURKEY);
KX_MACRO_addTypesToDict(d, FIVEKEY, SCA_IInputDevice::KX_FIVEKEY);
KX_MACRO_addTypesToDict(d, SIXKEY, SCA_IInputDevice::KX_SIXKEY);
KX_MACRO_addTypesToDict(d, SEVENKEY, SCA_IInputDevice::KX_SEVENKEY);
KX_MACRO_addTypesToDict(d, EIGHTKEY, SCA_IInputDevice::KX_EIGHTKEY);
KX_MACRO_addTypesToDict(d, NINEKEY, SCA_IInputDevice::KX_NINEKEY);
KX_MACRO_addTypesToDict(d, CAPSLOCKKEY, SCA_IInputDevice::KX_CAPSLOCKKEY);
KX_MACRO_addTypesToDict(d, LEFTCTRLKEY, SCA_IInputDevice::KX_LEFTCTRLKEY);
KX_MACRO_addTypesToDict(d, LEFTALTKEY, SCA_IInputDevice::KX_LEFTALTKEY);
KX_MACRO_addTypesToDict(d, RIGHTALTKEY, SCA_IInputDevice::KX_RIGHTALTKEY);
KX_MACRO_addTypesToDict(d, RIGHTCTRLKEY, SCA_IInputDevice::KX_RIGHTCTRLKEY);
KX_MACRO_addTypesToDict(d, RIGHTSHIFTKEY, SCA_IInputDevice::KX_RIGHTSHIFTKEY);
KX_MACRO_addTypesToDict(d, LEFTSHIFTKEY, SCA_IInputDevice::KX_LEFTSHIFTKEY);
KX_MACRO_addTypesToDict(d, ESCKEY, SCA_IInputDevice::KX_ESCKEY);
KX_MACRO_addTypesToDict(d, TABKEY, SCA_IInputDevice::KX_TABKEY);
KX_MACRO_addTypesToDict(d, RETKEY, SCA_IInputDevice::KX_RETKEY);
KX_MACRO_addTypesToDict(d, SPACEKEY, SCA_IInputDevice::KX_SPACEKEY);
KX_MACRO_addTypesToDict(d, LINEFEEDKEY, SCA_IInputDevice::KX_LINEFEEDKEY);
KX_MACRO_addTypesToDict(d, BACKSPACEKEY, SCA_IInputDevice::KX_BACKSPACEKEY);
KX_MACRO_addTypesToDict(d, DELKEY, SCA_IInputDevice::KX_DELKEY);
KX_MACRO_addTypesToDict(d, SEMICOLONKEY, SCA_IInputDevice::KX_SEMICOLONKEY);
KX_MACRO_addTypesToDict(d, PERIODKEY, SCA_IInputDevice::KX_PERIODKEY);
KX_MACRO_addTypesToDict(d, COMMAKEY, SCA_IInputDevice::KX_COMMAKEY);
KX_MACRO_addTypesToDict(d, QUOTEKEY, SCA_IInputDevice::KX_QUOTEKEY);
KX_MACRO_addTypesToDict(d, ACCENTGRAVEKEY, SCA_IInputDevice::KX_ACCENTGRAVEKEY);
KX_MACRO_addTypesToDict(d, MINUSKEY, SCA_IInputDevice::KX_MINUSKEY);
KX_MACRO_addTypesToDict(d, SLASHKEY, SCA_IInputDevice::KX_SLASHKEY);
KX_MACRO_addTypesToDict(d, BACKSLASHKEY, SCA_IInputDevice::KX_BACKSLASHKEY);
KX_MACRO_addTypesToDict(d, EQUALKEY, SCA_IInputDevice::KX_EQUALKEY);
KX_MACRO_addTypesToDict(d, LEFTBRACKETKEY, SCA_IInputDevice::KX_LEFTBRACKETKEY);
KX_MACRO_addTypesToDict(d, RIGHTBRACKETKEY, SCA_IInputDevice::KX_RIGHTBRACKETKEY);
KX_MACRO_addTypesToDict(d, LEFTARROWKEY, SCA_IInputDevice::KX_LEFTARROWKEY);
KX_MACRO_addTypesToDict(d, DOWNARROWKEY, SCA_IInputDevice::KX_DOWNARROWKEY);
KX_MACRO_addTypesToDict(d, RIGHTARROWKEY, SCA_IInputDevice::KX_RIGHTARROWKEY);
KX_MACRO_addTypesToDict(d, UPARROWKEY, SCA_IInputDevice::KX_UPARROWKEY);
KX_MACRO_addTypesToDict(d, PAD2 , SCA_IInputDevice::KX_PAD2);
KX_MACRO_addTypesToDict(d, PAD4 , SCA_IInputDevice::KX_PAD4);
KX_MACRO_addTypesToDict(d, PAD6 , SCA_IInputDevice::KX_PAD6);
KX_MACRO_addTypesToDict(d, PAD8 , SCA_IInputDevice::KX_PAD8);
KX_MACRO_addTypesToDict(d, PAD1 , SCA_IInputDevice::KX_PAD1);
KX_MACRO_addTypesToDict(d, PAD3 , SCA_IInputDevice::KX_PAD3);
KX_MACRO_addTypesToDict(d, PAD5 , SCA_IInputDevice::KX_PAD5);
KX_MACRO_addTypesToDict(d, PAD7 , SCA_IInputDevice::KX_PAD7);
KX_MACRO_addTypesToDict(d, PAD9 , SCA_IInputDevice::KX_PAD9);
KX_MACRO_addTypesToDict(d, PADPERIOD, SCA_IInputDevice::KX_PADPERIOD);
KX_MACRO_addTypesToDict(d, PADSLASHKEY, SCA_IInputDevice::KX_PADSLASHKEY);
KX_MACRO_addTypesToDict(d, PADASTERKEY, SCA_IInputDevice::KX_PADASTERKEY);
KX_MACRO_addTypesToDict(d, PAD0, SCA_IInputDevice::KX_PAD0);
KX_MACRO_addTypesToDict(d, PADMINUS, SCA_IInputDevice::KX_PADMINUS);
KX_MACRO_addTypesToDict(d, PADENTER, SCA_IInputDevice::KX_PADENTER);
KX_MACRO_addTypesToDict(d, PADPLUSKEY, SCA_IInputDevice::KX_PADPLUSKEY);
KX_MACRO_addTypesToDict(d, F1KEY , SCA_IInputDevice::KX_F1KEY);
KX_MACRO_addTypesToDict(d, F2KEY , SCA_IInputDevice::KX_F2KEY);
KX_MACRO_addTypesToDict(d, F3KEY , SCA_IInputDevice::KX_F3KEY);
KX_MACRO_addTypesToDict(d, F4KEY , SCA_IInputDevice::KX_F4KEY);
KX_MACRO_addTypesToDict(d, F5KEY , SCA_IInputDevice::KX_F5KEY);
KX_MACRO_addTypesToDict(d, F6KEY , SCA_IInputDevice::KX_F6KEY);
KX_MACRO_addTypesToDict(d, F7KEY , SCA_IInputDevice::KX_F7KEY);
KX_MACRO_addTypesToDict(d, F8KEY , SCA_IInputDevice::KX_F8KEY);
KX_MACRO_addTypesToDict(d, F9KEY , SCA_IInputDevice::KX_F9KEY);
KX_MACRO_addTypesToDict(d, F10KEY, SCA_IInputDevice::KX_F10KEY);
KX_MACRO_addTypesToDict(d, F11KEY, SCA_IInputDevice::KX_F11KEY);
KX_MACRO_addTypesToDict(d, F12KEY, SCA_IInputDevice::KX_F12KEY);
KX_MACRO_addTypesToDict(d, PAUSEKEY, SCA_IInputDevice::KX_PAUSEKEY);
KX_MACRO_addTypesToDict(d, INSERTKEY, SCA_IInputDevice::KX_INSERTKEY);
KX_MACRO_addTypesToDict(d, HOMEKEY , SCA_IInputDevice::KX_HOMEKEY);
KX_MACRO_addTypesToDict(d, PAGEUPKEY, SCA_IInputDevice::KX_PAGEUPKEY);
KX_MACRO_addTypesToDict(d, PAGEDOWNKEY, SCA_IInputDevice::KX_PAGEDOWNKEY);
KX_MACRO_addTypesToDict(d, ENDKEY, SCA_IInputDevice::KX_ENDKEY);
// Check for errors
if (PyErr_Occurred())
{
Py_FatalError("can't initialize module GameKeys");
}
return d;
}
#if PY_VERSION_HEX < 0x03000000
PyObject* initMathutils()
{
return Mathutils_Init("Mathutils"); // Use as a top level module in BGE
}
PyObject* initGeometry()
{
return Geometry_Init("Geometry"); // Use as a top level module in BGE
}
PyObject* initBGL()
{
return BGL_Init("BGL"); // Use as a top level module in BGE
}
#else // TODO Py3k conversion
PyObject* initMathutils() {Py_INCREF(Py_None);return Py_None;}
PyObject* initGeometry() {Py_INCREF(Py_None);return Py_None;}
PyObject* initBGL() {Py_INCREF(Py_None);return Py_None;}
#endif
void KX_SetActiveScene(class KX_Scene* scene)
{
gp_KetsjiScene = scene;
}
class KX_Scene* KX_GetActiveScene()
{
return gp_KetsjiScene;
}
class KX_KetsjiEngine* KX_GetActiveEngine()
{
return gp_KetsjiEngine;
}
// utility function for loading and saving the globalDict
int saveGamePythonConfig( char **marshal_buffer)
{
int marshal_length = 0;
PyObject* gameLogic = PyImport_ImportModule("GameLogic");
if (gameLogic) {
PyObject* pyGlobalDict = PyDict_GetItemString(PyModule_GetDict(gameLogic), "globalDict"); // Same as importing the module
if (pyGlobalDict) {
#ifdef Py_MARSHAL_VERSION
PyObject* pyGlobalDictMarshal = PyMarshal_WriteObjectToString( pyGlobalDict, 2); // Py_MARSHAL_VERSION == 2 as of Py2.5
#else
PyObject* pyGlobalDictMarshal = PyMarshal_WriteObjectToString( pyGlobalDict );
#endif
if (pyGlobalDictMarshal) {
// for testing only
// PyObject_Print(pyGlobalDictMarshal, stderr, 0);
marshal_length= PyString_Size(pyGlobalDictMarshal);
*marshal_buffer = new char[marshal_length + 1];
memcpy(*marshal_buffer, PyString_AsString(pyGlobalDictMarshal), marshal_length);
Py_DECREF(pyGlobalDictMarshal);
} else {
printf("Error, GameLogic.globalDict could not be marshal'd\n");
}
} else {
printf("Error, GameLogic.globalDict was removed\n");
}
Py_DECREF(gameLogic);
} else {
PyErr_Clear();
printf("Error, GameLogic failed to import GameLogic.globalDict will be lost\n");
}
return marshal_length;
}
int loadGamePythonConfig(char *marshal_buffer, int marshal_length)
{
/* Restore the dict */
if (marshal_buffer) {
PyObject* gameLogic = PyImport_ImportModule("GameLogic");
if (gameLogic) {
PyObject* pyGlobalDict = PyMarshal_ReadObjectFromString(marshal_buffer, marshal_length);
if (pyGlobalDict) {
PyObject* pyGlobalDict_orig = PyDict_GetItemString(PyModule_GetDict(gameLogic), "globalDict"); // Same as importing the module.
if (pyGlobalDict_orig) {
PyDict_Clear(pyGlobalDict_orig);
PyDict_Update(pyGlobalDict_orig, pyGlobalDict);
} else {
/* this should not happen, but cant find the original globalDict, just assign it then */
PyDict_SetItemString(PyModule_GetDict(gameLogic), "globalDict", pyGlobalDict); // Same as importing the module.
}
Py_DECREF(gameLogic);
Py_DECREF(pyGlobalDict);
return 1;
} else {
Py_DECREF(gameLogic);
PyErr_Clear();
printf("Error could not marshall string\n");
}
} else {
PyErr_Clear();
printf("Error, GameLogic failed to import GameLogic.globalDict will be lost\n");
}
}
return 0;
}
void pathGamePythonConfig( char *path )
{
int len = strlen(gp_GamePythonPath);
BLI_strncpy(path, gp_GamePythonPath, sizeof(gp_GamePythonPath));
/* replace extension */
if (BLI_testextensie(path, ".blend")) {
strcpy(path+(len-6), ".bgeconf");
} else {
strcpy(path+len, ".bgeconf");
}
}
void setGamePythonPath(char *path)
{
BLI_strncpy(gp_GamePythonPath, path, sizeof(gp_GamePythonPath));
}