forked from bartvdbraak/blender
4e51512d0b
renamed BLO_sys_types.h to superlu_sys_types.h
458 lines
16 KiB
C
458 lines
16 KiB
C
/** \file opennl/superlu/sgstrf.c
|
|
* \ingroup opennl
|
|
*/
|
|
|
|
/*
|
|
* -- SuperLU routine (version 3.0) --
|
|
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
|
|
* and Lawrence Berkeley National Lab.
|
|
* October 15, 2003
|
|
*
|
|
*/
|
|
/*
|
|
Copyright (c) 1994 by Xerox Corporation. All rights reserved.
|
|
|
|
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
|
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
|
|
Permission is hereby granted to use or copy this program for any
|
|
purpose, provided the above notices are retained on all copies.
|
|
Permission to modify the code and to distribute modified code is
|
|
granted, provided the above notices are retained, and a notice that
|
|
the code was modified is included with the above copyright notice.
|
|
*/
|
|
|
|
#include "ssp_defs.h"
|
|
|
|
void
|
|
sgstrf (superlu_options_t *options, SuperMatrix *A,
|
|
int relax, int panel_size, int *etree, void *work, int lwork,
|
|
int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U,
|
|
SuperLUStat_t *stat, int *info)
|
|
{
|
|
/*
|
|
* Purpose
|
|
* =======
|
|
*
|
|
* SGSTRF computes an LU factorization of a general sparse m-by-n
|
|
* matrix A using partial pivoting with row interchanges.
|
|
* The factorization has the form
|
|
* Pr * A = L * U
|
|
* where Pr is a row permutation matrix, L is lower triangular with unit
|
|
* diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper
|
|
* triangular (upper trapezoidal if A->nrow < A->ncol).
|
|
*
|
|
* See supermatrix.h for the definition of 'SuperMatrix' structure.
|
|
*
|
|
* Arguments
|
|
* =========
|
|
*
|
|
* options (input) superlu_options_t*
|
|
* The structure defines the input parameters to control
|
|
* how the LU decomposition will be performed.
|
|
*
|
|
* A (input) SuperMatrix*
|
|
* Original matrix A, permuted by columns, of dimension
|
|
* (A->nrow, A->ncol). The type of A can be:
|
|
* Stype = SLU_NCP; Dtype = SLU_S; Mtype = SLU_GE.
|
|
*
|
|
* drop_tol (input) float (NOT IMPLEMENTED)
|
|
* Drop tolerance parameter. At step j of the Gaussian elimination,
|
|
* if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
|
|
* 0 <= drop_tol <= 1. The default value of drop_tol is 0.
|
|
*
|
|
* relax (input) int
|
|
* To control degree of relaxing supernodes. If the number
|
|
* of nodes (columns) in a subtree of the elimination tree is less
|
|
* than relax, this subtree is considered as one supernode,
|
|
* regardless of the row structures of those columns.
|
|
*
|
|
* panel_size (input) int
|
|
* A panel consists of at most panel_size consecutive columns.
|
|
*
|
|
* etree (input) int*, dimension (A->ncol)
|
|
* Elimination tree of A'*A.
|
|
* Note: etree is a vector of parent pointers for a forest whose
|
|
* vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
|
|
* On input, the columns of A should be permuted so that the
|
|
* etree is in a certain postorder.
|
|
*
|
|
* work (input/output) void*, size (lwork) (in bytes)
|
|
* User-supplied work space and space for the output data structures.
|
|
* Not referenced if lwork = 0;
|
|
*
|
|
* lwork (input) int
|
|
* Specifies the size of work array in bytes.
|
|
* = 0: allocate space internally by system malloc;
|
|
* > 0: use user-supplied work array of length lwork in bytes,
|
|
* returns error if space runs out.
|
|
* = -1: the routine guesses the amount of space needed without
|
|
* performing the factorization, and returns it in
|
|
* *info; no other side effects.
|
|
*
|
|
* perm_c (input) int*, dimension (A->ncol)
|
|
* Column permutation vector, which defines the
|
|
* permutation matrix Pc; perm_c[i] = j means column i of A is
|
|
* in position j in A*Pc.
|
|
* When searching for diagonal, perm_c[*] is applied to the
|
|
* row subscripts of A, so that diagonal threshold pivoting
|
|
* can find the diagonal of A, rather than that of A*Pc.
|
|
*
|
|
* perm_r (input/output) int*, dimension (A->nrow)
|
|
* Row permutation vector which defines the permutation matrix Pr,
|
|
* perm_r[i] = j means row i of A is in position j in Pr*A.
|
|
* If options->Fact = SamePattern_SameRowPerm, the pivoting routine
|
|
* will try to use the input perm_r, unless a certain threshold
|
|
* criterion is violated. In that case, perm_r is overwritten by
|
|
* a new permutation determined by partial pivoting or diagonal
|
|
* threshold pivoting.
|
|
* Otherwise, perm_r is output argument;
|
|
*
|
|
* L (output) SuperMatrix*
|
|
* The factor L from the factorization Pr*A=L*U; use compressed row
|
|
* subscripts storage for supernodes, i.e., L has type:
|
|
* Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
|
|
*
|
|
* U (output) SuperMatrix*
|
|
* The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
|
|
* storage scheme, i.e., U has types: Stype = SLU_NC,
|
|
* Dtype = SLU_S, Mtype = SLU_TRU.
|
|
*
|
|
* stat (output) SuperLUStat_t*
|
|
* Record the statistics on runtime and floating-point operation count.
|
|
* See util.h for the definition of 'SuperLUStat_t'.
|
|
*
|
|
* info (output) int*
|
|
* = 0: successful exit
|
|
* < 0: if info = -i, the i-th argument had an illegal value
|
|
* > 0: if info = i, and i is
|
|
* <= A->ncol: U(i,i) is exactly zero. The factorization has
|
|
* been completed, but the factor U is exactly singular,
|
|
* and division by zero will occur if it is used to solve a
|
|
* system of equations.
|
|
* > A->ncol: number of bytes allocated when memory allocation
|
|
* failure occurred, plus A->ncol. If lwork = -1, it is
|
|
* the estimated amount of space needed, plus A->ncol.
|
|
*
|
|
* ======================================================================
|
|
*
|
|
* Local Working Arrays:
|
|
* ======================
|
|
* m = number of rows in the matrix
|
|
* n = number of columns in the matrix
|
|
*
|
|
* xprune[0:n-1]: xprune[*] points to locations in subscript
|
|
* vector lsub[*]. For column i, xprune[i] denotes the point where
|
|
* structural pruning begins. I.e. only xlsub[i],..,xprune[i]-1 need
|
|
* to be traversed for symbolic factorization.
|
|
*
|
|
* marker[0:3*m-1]: marker[i] = j means that node i has been
|
|
* reached when working on column j.
|
|
* Storage: relative to original row subscripts
|
|
* NOTE: There are 3 of them: marker/marker1 are used for panel dfs,
|
|
* see spanel_dfs.c; marker2 is used for inner-factorization,
|
|
* see scolumn_dfs.c.
|
|
*
|
|
* parent[0:m-1]: parent vector used during dfs
|
|
* Storage: relative to new row subscripts
|
|
*
|
|
* xplore[0:m-1]: xplore[i] gives the location of the next (dfs)
|
|
* unexplored neighbor of i in lsub[*]
|
|
*
|
|
* segrep[0:nseg-1]: contains the list of supernodal representatives
|
|
* in topological order of the dfs. A supernode representative is the
|
|
* last column of a supernode.
|
|
* The maximum size of segrep[] is n.
|
|
*
|
|
* repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a
|
|
* supernodal representative r, repfnz[r] is the location of the first
|
|
* nonzero in this segment. It is also used during the dfs: repfnz[r]>0
|
|
* indicates the supernode r has been explored.
|
|
* NOTE: There are W of them, each used for one column of a panel.
|
|
*
|
|
* panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below
|
|
* the panel diagonal. These are filled in during spanel_dfs(), and are
|
|
* used later in the inner LU factorization within the panel.
|
|
* panel_lsub[]/dense[] pair forms the SPA data structure.
|
|
* NOTE: There are W of them.
|
|
*
|
|
* dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
|
|
* NOTE: there are W of them.
|
|
*
|
|
* tempv[0:*]: real temporary used for dense numeric kernels;
|
|
* The size of this array is defined by NUM_TEMPV() in ssp_defs.h.
|
|
*
|
|
*/
|
|
/* Local working arrays */
|
|
NCPformat *Astore;
|
|
int *iperm_r = NULL; /* inverse of perm_r;
|
|
used when options->Fact == SamePattern_SameRowPerm */
|
|
int *iperm_c; /* inverse of perm_c */
|
|
int *iwork;
|
|
float *swork;
|
|
int *segrep, *repfnz, *parent, *xplore;
|
|
int *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
|
|
int *xprune;
|
|
int *marker;
|
|
float *dense, *tempv;
|
|
int *relax_end;
|
|
float *a;
|
|
int *asub;
|
|
int *xa_begin, *xa_end;
|
|
int *xsup, *supno;
|
|
int *xlsub, *xlusup, *xusub;
|
|
int nzlumax;
|
|
static GlobalLU_t Glu; /* persistent to facilitate multiple factors. */
|
|
|
|
/* Local scalars */
|
|
fact_t fact = options->Fact;
|
|
double diag_pivot_thresh = options->DiagPivotThresh;
|
|
int pivrow; /* pivotal row number in the original matrix A */
|
|
int nseg1; /* no of segments in U-column above panel row jcol */
|
|
int nseg; /* no of segments in each U-column */
|
|
register int jcol;
|
|
register int kcol; /* end column of a relaxed snode */
|
|
register int icol;
|
|
register int i, k, jj, new_next, iinfo;
|
|
int m, n, min_mn, jsupno, fsupc, nextlu, nextu;
|
|
int w_def; /* upper bound on panel width */
|
|
int usepr, iperm_r_allocated = 0;
|
|
int nnzL, nnzU;
|
|
int *panel_histo = stat->panel_histo;
|
|
flops_t *ops = stat->ops;
|
|
|
|
iinfo = 0;
|
|
m = A->nrow;
|
|
n = A->ncol;
|
|
min_mn = SUPERLU_MIN(m, n);
|
|
Astore = A->Store;
|
|
a = Astore->nzval;
|
|
asub = Astore->rowind;
|
|
xa_begin = Astore->colbeg;
|
|
xa_end = Astore->colend;
|
|
|
|
/* Allocate storage common to the factor routines */
|
|
*info = sLUMemInit(fact, work, lwork, m, n, Astore->nnz,
|
|
panel_size, L, U, &Glu, &iwork, &swork);
|
|
if ( *info ) return;
|
|
|
|
xsup = Glu.xsup;
|
|
supno = Glu.supno;
|
|
xlsub = Glu.xlsub;
|
|
xlusup = Glu.xlusup;
|
|
xusub = Glu.xusub;
|
|
|
|
SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
|
|
&repfnz, &panel_lsub, &xprune, &marker);
|
|
sSetRWork(m, panel_size, swork, &dense, &tempv);
|
|
|
|
usepr = (fact == SamePattern_SameRowPerm);
|
|
if ( usepr ) {
|
|
/* Compute the inverse of perm_r */
|
|
iperm_r = (int *) intMalloc(m);
|
|
for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
|
|
iperm_r_allocated = 1;
|
|
}
|
|
iperm_c = (int *) intMalloc(n);
|
|
for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;
|
|
|
|
/* Identify relaxed snodes */
|
|
relax_end = (int *) intMalloc(n);
|
|
if ( options->SymmetricMode == YES ) {
|
|
heap_relax_snode(n, etree, relax, marker, relax_end);
|
|
} else {
|
|
relax_snode(n, etree, relax, marker, relax_end);
|
|
}
|
|
|
|
ifill (perm_r, m, EMPTY);
|
|
ifill (marker, m * NO_MARKER, EMPTY);
|
|
supno[0] = -1;
|
|
xsup[0] = xlsub[0] = xusub[0] = xlusup[0] = 0;
|
|
w_def = panel_size;
|
|
|
|
/*
|
|
* Work on one "panel" at a time. A panel is one of the following:
|
|
* (a) a relaxed supernode at the bottom of the etree, or
|
|
* (b) panel_size contiguous columns, defined by the user
|
|
*/
|
|
for (jcol = 0; jcol < min_mn; ) {
|
|
|
|
if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
|
|
kcol = relax_end[jcol]; /* end of the relaxed snode */
|
|
panel_histo[kcol-jcol+1]++;
|
|
|
|
/* --------------------------------------
|
|
* Factorize the relaxed supernode(jcol:kcol)
|
|
* -------------------------------------- */
|
|
/* Determine the union of the row structure of the snode */
|
|
if ( (*info = ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
|
|
xprune, marker, &Glu)) != 0 ) {
|
|
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
|
|
SUPERLU_FREE (iperm_c);
|
|
SUPERLU_FREE (relax_end);
|
|
return;
|
|
}
|
|
|
|
nextu = xusub[jcol];
|
|
nextlu = xlusup[jcol];
|
|
jsupno = supno[jcol];
|
|
fsupc = xsup[jsupno];
|
|
new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
|
|
nzlumax = Glu.nzlumax;
|
|
while ( new_next > nzlumax ) {
|
|
if ( (*info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu)) ) {
|
|
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
|
|
SUPERLU_FREE (iperm_c);
|
|
SUPERLU_FREE (relax_end);
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (icol = jcol; icol<= kcol; icol++) {
|
|
xusub[icol+1] = nextu;
|
|
|
|
/* Scatter into SPA dense[*] */
|
|
for (k = xa_begin[icol]; k < xa_end[icol]; k++)
|
|
dense[asub[k]] = a[k];
|
|
|
|
/* Numeric update within the snode */
|
|
ssnode_bmod(icol, fsupc, dense, tempv, &Glu, stat);
|
|
|
|
if ( (*info = spivotL(icol, diag_pivot_thresh, &usepr, perm_r,
|
|
iperm_r, iperm_c, &pivrow, &Glu, stat)) )
|
|
if ( iinfo == 0 ) iinfo = *info;
|
|
|
|
#ifdef DEBUG
|
|
sprint_lu_col("[1]: ", icol, pivrow, xprune, &Glu);
|
|
#endif
|
|
|
|
}
|
|
|
|
jcol = icol;
|
|
|
|
} else { /* Work on one panel of panel_size columns */
|
|
|
|
/* Adjust panel_size so that a panel won't overlap with the next
|
|
* relaxed snode.
|
|
*/
|
|
panel_size = w_def;
|
|
for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
|
|
if ( relax_end[k] != EMPTY ) {
|
|
panel_size = k - jcol;
|
|
break;
|
|
}
|
|
if ( k == min_mn ) panel_size = min_mn - jcol;
|
|
panel_histo[panel_size]++;
|
|
|
|
/* symbolic factor on a panel of columns */
|
|
spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
|
|
dense, panel_lsub, segrep, repfnz, xprune,
|
|
marker, parent, xplore, &Glu);
|
|
|
|
/* numeric sup-panel updates in topological order */
|
|
spanel_bmod(m, panel_size, jcol, nseg1, dense,
|
|
tempv, segrep, repfnz, &Glu, stat);
|
|
|
|
/* Sparse LU within the panel, and below panel diagonal */
|
|
for ( jj = jcol; jj < jcol + panel_size; jj++) {
|
|
k = (jj - jcol) * m; /* column index for w-wide arrays */
|
|
|
|
nseg = nseg1; /* Begin after all the panel segments */
|
|
|
|
if ((*info = scolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
|
|
segrep, &repfnz[k], xprune, marker,
|
|
parent, xplore, &Glu)) != 0) {
|
|
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
|
|
SUPERLU_FREE (iperm_c);
|
|
SUPERLU_FREE (relax_end);
|
|
return;
|
|
}
|
|
|
|
/* Numeric updates */
|
|
if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
|
|
tempv, &segrep[nseg1], &repfnz[k],
|
|
jcol, &Glu, stat)) != 0) {
|
|
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
|
|
SUPERLU_FREE (iperm_c);
|
|
SUPERLU_FREE (relax_end);
|
|
return;
|
|
}
|
|
|
|
/* Copy the U-segments to ucol[*] */
|
|
if ((*info = scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
|
|
perm_r, &dense[k], &Glu)) != 0) {
|
|
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
|
|
SUPERLU_FREE (iperm_c);
|
|
SUPERLU_FREE (relax_end);
|
|
return;
|
|
}
|
|
|
|
if ( (*info = spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
|
|
iperm_r, iperm_c, &pivrow, &Glu, stat)) )
|
|
if ( iinfo == 0 ) iinfo = *info;
|
|
|
|
/* Prune columns (0:jj-1) using column jj */
|
|
spruneL(jj, perm_r, pivrow, nseg, segrep,
|
|
&repfnz[k], xprune, &Glu);
|
|
|
|
/* Reset repfnz[] for this column */
|
|
resetrep_col (nseg, segrep, &repfnz[k]);
|
|
|
|
#ifdef DEBUG
|
|
sprint_lu_col("[2]: ", jj, pivrow, xprune, &Glu);
|
|
#endif
|
|
|
|
}
|
|
|
|
jcol += panel_size; /* Move to the next panel */
|
|
|
|
} /* else */
|
|
|
|
} /* for */
|
|
|
|
*info = iinfo;
|
|
|
|
if ( m > n ) {
|
|
k = 0;
|
|
for (i = 0; i < m; ++i)
|
|
if ( perm_r[i] == EMPTY ) {
|
|
perm_r[i] = n + k;
|
|
++k;
|
|
}
|
|
}
|
|
|
|
countnz(min_mn, xprune, &nnzL, &nnzU, &Glu);
|
|
fixupL(min_mn, perm_r, &Glu);
|
|
|
|
sLUWorkFree(iwork, swork, &Glu); /* Free work space and compress storage */
|
|
|
|
if ( fact == SamePattern_SameRowPerm ) {
|
|
/* L and U structures may have changed due to possibly different
|
|
pivoting, even though the storage is available.
|
|
There could also be memory expansions, so the array locations
|
|
may have changed, */
|
|
((SCformat *)L->Store)->nnz = nnzL;
|
|
((SCformat *)L->Store)->nsuper = Glu.supno[n];
|
|
((SCformat *)L->Store)->nzval = Glu.lusup;
|
|
((SCformat *)L->Store)->nzval_colptr = Glu.xlusup;
|
|
((SCformat *)L->Store)->rowind = Glu.lsub;
|
|
((SCformat *)L->Store)->rowind_colptr = Glu.xlsub;
|
|
((NCformat *)U->Store)->nnz = nnzU;
|
|
((NCformat *)U->Store)->nzval = Glu.ucol;
|
|
((NCformat *)U->Store)->rowind = Glu.usub;
|
|
((NCformat *)U->Store)->colptr = Glu.xusub;
|
|
} else {
|
|
sCreate_SuperNode_Matrix(L, A->nrow, A->ncol, nnzL, Glu.lusup,
|
|
Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
|
|
Glu.xsup, SLU_SC, SLU_S, SLU_TRLU);
|
|
sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol,
|
|
Glu.usub, Glu.xusub, SLU_NC, SLU_S, SLU_TRU);
|
|
}
|
|
|
|
ops[FACT] += ops[TRSV] + ops[GEMV];
|
|
|
|
if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
|
|
SUPERLU_FREE (iperm_c);
|
|
SUPERLU_FREE (relax_end);
|
|
}
|