forked from bartvdbraak/blender
109 lines
3.7 KiB
C++
109 lines
3.7 KiB
C++
#include "MT_Optimize.h"
|
|
|
|
/*
|
|
* This is a supposedly faster inverter than the cofactor
|
|
* computation. It uses an LU decomposition sort of thing. */
|
|
GEN_INLINE void MT_Matrix4x4::invert() {
|
|
/* normalize row 0 */
|
|
|
|
int i,j,k;
|
|
|
|
for (i=1; i < 4; i++) m_el[0][i] /= m_el[0][0];
|
|
for (i=1; i < 4; i++) {
|
|
for (j=i; j < 4; j++) { // do a column of L
|
|
MT_Scalar sum = 0.0;
|
|
for (k = 0; k < i; k++)
|
|
sum += m_el[j][k] * m_el[k][i];
|
|
m_el[j][i] -= sum;
|
|
}
|
|
if (i == 3) continue;
|
|
for (j=i+1; j < 4; j++) { // do a row of U
|
|
MT_Scalar sum = 0.0;
|
|
for (k = 0; k < i; k++)
|
|
sum += m_el[i][k]*m_el[k][j];
|
|
m_el[i][j] =
|
|
(m_el[i][j]-sum) / m_el[i][i];
|
|
}
|
|
}
|
|
for (i = 0; i < 4; i++ ) // invert L
|
|
for (j = i; j < 4; j++ ) {
|
|
MT_Scalar x = 1.0;
|
|
if ( i != j ) {
|
|
x = 0.0;
|
|
for (k = i; k < j; k++ )
|
|
x -= m_el[j][k]*m_el[k][i];
|
|
}
|
|
m_el[j][i] = x / m_el[j][j];
|
|
}
|
|
for (i = 0; i < 4; i++ ) // invert U
|
|
for (j = i; j < 4; j++ ) {
|
|
if ( i == j ) continue;
|
|
MT_Scalar sum = 0.0;
|
|
for (k = i; k < j; k++ )
|
|
sum += m_el[k][j]*( (i==k) ? 1.0 : m_el[i][k] );
|
|
m_el[i][j] = -sum;
|
|
}
|
|
for (i = 0; i < 4; i++ ) // final inversion
|
|
for (j = 0; j < 4; j++ ) {
|
|
MT_Scalar sum = 0.0;
|
|
for (k = ((i>j)?i:j); k < 4; k++ )
|
|
sum += ((j==k)?1.0:m_el[j][k])*m_el[k][i];
|
|
m_el[j][i] = sum;
|
|
}
|
|
}
|
|
|
|
/* We do things slightly different here, because the invert() modifies
|
|
* the buffer itself. This makes it impossible to make this op right
|
|
* away. Like other, still missing facilities, I will repair this
|
|
* later. */
|
|
/* GEN_INLINE T_Matrix4x4 MT_Matrix4x4::inverse() const */
|
|
/* { */
|
|
/* } */
|
|
|
|
|
|
GEN_INLINE MT_Matrix4x4& MT_Matrix4x4::operator*=(const MT_Matrix4x4& m)
|
|
{
|
|
setValue(m.tdot(0, m_el[0]), m.tdot(1, m_el[0]), m.tdot(2, m_el[0]), m.tdot(3, m_el[0]),
|
|
m.tdot(0, m_el[1]), m.tdot(1, m_el[1]), m.tdot(2, m_el[1]), m.tdot(3, m_el[1]),
|
|
m.tdot(0, m_el[2]), m.tdot(1, m_el[2]), m.tdot(2, m_el[2]), m.tdot(3, m_el[2]),
|
|
m.tdot(0, m_el[3]), m.tdot(1, m_el[3]), m.tdot(2, m_el[3]), m.tdot(3, m_el[3]));
|
|
return *this;
|
|
|
|
}
|
|
|
|
GEN_INLINE MT_Vector4 operator*(const MT_Matrix4x4& m, const MT_Vector4& v) {
|
|
return MT_Vector4(MT_dot(m[0], v), MT_dot(m[1], v), MT_dot(m[2], v), MT_dot(m[3], v));
|
|
}
|
|
|
|
GEN_INLINE MT_Vector4 operator*(const MT_Vector4& v, const MT_Matrix4x4& m) {
|
|
return MT_Vector4(m.tdot(0, v), m.tdot(1, v), m.tdot(2, v), m.tdot(3, v));
|
|
}
|
|
|
|
GEN_INLINE MT_Matrix4x4 operator*(const MT_Matrix4x4& m1, const MT_Matrix4x4& m2) {
|
|
return
|
|
MT_Matrix4x4(m2.tdot(0, m1[0]), m2.tdot(1, m1[0]), m2.tdot(2, m1[0]), m2.tdot(3, m1[0]),
|
|
m2.tdot(0, m1[1]), m2.tdot(1, m1[1]), m2.tdot(2, m1[1]), m2.tdot(3, m1[1]),
|
|
m2.tdot(0, m1[2]), m2.tdot(1, m1[2]), m2.tdot(2, m1[2]), m2.tdot(3, m1[2]),
|
|
m2.tdot(0, m1[3]), m2.tdot(1, m1[3]), m2.tdot(2, m1[3]), m2.tdot(3, m1[3]));
|
|
}
|
|
|
|
|
|
GEN_INLINE MT_Matrix4x4 MT_Matrix4x4::transposed() const {
|
|
return MT_Matrix4x4(m_el[0][0], m_el[1][0], m_el[2][0], m_el[3][0],
|
|
m_el[0][1], m_el[1][1], m_el[2][1], m_el[3][1],
|
|
m_el[0][2], m_el[1][2], m_el[2][2], m_el[3][2],
|
|
m_el[0][3], m_el[1][3], m_el[2][3], m_el[3][3]);
|
|
}
|
|
|
|
GEN_INLINE void MT_Matrix4x4::transpose() {
|
|
*this = transposed();
|
|
}
|
|
|
|
GEN_INLINE MT_Matrix4x4 MT_Matrix4x4::absolute() const {
|
|
return
|
|
MT_Matrix4x4(MT_abs(m_el[0][0]), MT_abs(m_el[0][1]), MT_abs(m_el[0][2]), MT_abs(m_el[0][3]),
|
|
MT_abs(m_el[1][0]), MT_abs(m_el[1][1]), MT_abs(m_el[1][2]), MT_abs(m_el[1][3]),
|
|
MT_abs(m_el[2][0]), MT_abs(m_el[2][1]), MT_abs(m_el[2][2]), MT_abs(m_el[2][3]),
|
|
MT_abs(m_el[3][0]), MT_abs(m_el[3][1]), MT_abs(m_el[3][2]), MT_abs(m_el[3][3]));
|
|
}
|