blender/extern/mantaflow/preprocessed/conjugategrad.cpp
Sebastián Barschkis 635694c0ff Fluid: Added new viscosity solver
Mainly updated the Mantaflow version. It includes the new viscosity solver plugin based on the method from 'Accurate Viscous Free Surfaces for Buckling, Coiling, and Rotating Liquids' (Batty & Bridson).

In the UI, this update adds a new 'Viscosity' section to the fluid modifier UI (liquid domains only). For now, there is a single 'strength' value to control the viscosity of liquids.
2020-12-23 15:48:38 +01:00

754 lines
22 KiB
C++

// DO NOT EDIT !
// This file is generated using the MantaFlow preprocessor (prep generate).
/******************************************************************************
*
* MantaFlow fluid solver framework
* Copyright 2011 Tobias Pfaff, Nils Thuerey
*
* This program is free software, distributed under the terms of the
* Apache License, Version 2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Conjugate gradient solver, for pressure and viscosity
*
******************************************************************************/
#include "conjugategrad.h"
#include "commonkernels.h"
using namespace std;
namespace Manta {
const int CG_DEBUGLEVEL = 3;
//*****************************************************************************
// Precondition helpers
//! Preconditioning a la Wavelet Turbulence (needs 4 add. grids)
void InitPreconditionIncompCholesky(const FlagGrid &flags,
Grid<Real> &A0,
Grid<Real> &Ai,
Grid<Real> &Aj,
Grid<Real> &Ak,
Grid<Real> &orgA0,
Grid<Real> &orgAi,
Grid<Real> &orgAj,
Grid<Real> &orgAk)
{
// compute IC according to Golub and Van Loan
A0.copyFrom(orgA0);
Ai.copyFrom(orgAi);
Aj.copyFrom(orgAj);
Ak.copyFrom(orgAk);
FOR_IJK(A0)
{
if (flags.isFluid(i, j, k)) {
const IndexInt idx = A0.index(i, j, k);
A0[idx] = sqrt(A0[idx]);
// correct left and top stencil in other entries
// for i = k+1:n
// if (A(i,k) != 0)
// A(i,k) = A(i,k) / A(k,k)
Real invDiagonal = 1.0f / A0[idx];
Ai[idx] *= invDiagonal;
Aj[idx] *= invDiagonal;
Ak[idx] *= invDiagonal;
// correct the right and bottom stencil in other entries
// for j = k+1:n
// for i = j:n
// if (A(i,j) != 0)
// A(i,j) = A(i,j) - A(i,k) * A(j,k)
A0(i + 1, j, k) -= square(Ai[idx]);
A0(i, j + 1, k) -= square(Aj[idx]);
A0(i, j, k + 1) -= square(Ak[idx]);
}
}
// invert A0 for faster computation later
InvertCheckFluid(flags, A0);
};
//! Preconditioning using modified IC ala Bridson (needs 1 add. grid)
void InitPreconditionModifiedIncompCholesky2(const FlagGrid &flags,
Grid<Real> &Aprecond,
Grid<Real> &A0,
Grid<Real> &Ai,
Grid<Real> &Aj,
Grid<Real> &Ak)
{
// compute IC according to Golub and Van Loan
Aprecond.clear();
FOR_IJK(flags)
{
if (!flags.isFluid(i, j, k))
continue;
const Real tau = 0.97;
const Real sigma = 0.25;
// compute modified incomplete cholesky
Real e = 0.;
e = A0(i, j, k) - square(Ai(i - 1, j, k) * Aprecond(i - 1, j, k)) -
square(Aj(i, j - 1, k) * Aprecond(i, j - 1, k)) -
square(Ak(i, j, k - 1) * Aprecond(i, j, k - 1));
e -= tau *
(Ai(i - 1, j, k) * (Aj(i - 1, j, k) + Ak(i - 1, j, k)) * square(Aprecond(i - 1, j, k)) +
Aj(i, j - 1, k) * (Ai(i, j - 1, k) + Ak(i, j - 1, k)) * square(Aprecond(i, j - 1, k)) +
Ak(i, j, k - 1) * (Ai(i, j, k - 1) + Aj(i, j, k - 1)) * square(Aprecond(i, j, k - 1)) +
0.);
// stability cutoff
if (e < sigma * A0(i, j, k))
e = A0(i, j, k);
Aprecond(i, j, k) = 1. / sqrt(e);
}
};
//! Preconditioning using multigrid ala Dick et al.
void InitPreconditionMultigrid(
GridMg *MG, Grid<Real> &A0, Grid<Real> &Ai, Grid<Real> &Aj, Grid<Real> &Ak, Real mAccuracy)
{
// build multigrid hierarchy if necessary
if (!MG->isASet())
MG->setA(&A0, &Ai, &Aj, &Ak);
MG->setCoarsestLevelAccuracy(mAccuracy * 1E-4);
MG->setSmoothing(1, 1);
};
//! Apply WT-style ICP
void ApplyPreconditionIncompCholesky(Grid<Real> &dst,
Grid<Real> &Var1,
const FlagGrid &flags,
Grid<Real> &A0,
Grid<Real> &Ai,
Grid<Real> &Aj,
Grid<Real> &Ak,
Grid<Real> &orgA0,
Grid<Real> &orgAi,
Grid<Real> &orgAj,
Grid<Real> &orgAk)
{
// forward substitution
FOR_IJK(dst)
{
if (!flags.isFluid(i, j, k))
continue;
dst(i, j, k) = A0(i, j, k) *
(Var1(i, j, k) - dst(i - 1, j, k) * Ai(i - 1, j, k) -
dst(i, j - 1, k) * Aj(i, j - 1, k) - dst(i, j, k - 1) * Ak(i, j, k - 1));
}
// backward substitution
FOR_IJK_REVERSE(dst)
{
const IndexInt idx = A0.index(i, j, k);
if (!flags.isFluid(idx))
continue;
dst[idx] = A0[idx] * (dst[idx] - dst(i + 1, j, k) * Ai[idx] - dst(i, j + 1, k) * Aj[idx] -
dst(i, j, k + 1) * Ak[idx]);
}
}
//! Apply Bridson-style mICP
void ApplyPreconditionModifiedIncompCholesky2(Grid<Real> &dst,
Grid<Real> &Var1,
const FlagGrid &flags,
Grid<Real> &Aprecond,
Grid<Real> &A0,
Grid<Real> &Ai,
Grid<Real> &Aj,
Grid<Real> &Ak)
{
// forward substitution
FOR_IJK(dst)
{
if (!flags.isFluid(i, j, k))
continue;
const Real p = Aprecond(i, j, k);
dst(i, j, k) = p *
(Var1(i, j, k) - dst(i - 1, j, k) * Ai(i - 1, j, k) * Aprecond(i - 1, j, k) -
dst(i, j - 1, k) * Aj(i, j - 1, k) * Aprecond(i, j - 1, k) -
dst(i, j, k - 1) * Ak(i, j, k - 1) * Aprecond(i, j, k - 1));
}
// backward substitution
FOR_IJK_REVERSE(dst)
{
const IndexInt idx = A0.index(i, j, k);
if (!flags.isFluid(idx))
continue;
const Real p = Aprecond[idx];
dst[idx] = p * (dst[idx] - dst(i + 1, j, k) * Ai[idx] * p - dst(i, j + 1, k) * Aj[idx] * p -
dst(i, j, k + 1) * Ak[idx] * p);
}
}
//! Perform one Multigrid VCycle
void ApplyPreconditionMultigrid(GridMg *pMG, Grid<Real> &dst, Grid<Real> &Var1)
{
// one VCycle on "A*dst = Var1" with initial guess dst=0
pMG->setRhs(Var1);
pMG->doVCycle(dst);
}
//*****************************************************************************
// Kernels
//! Kernel: Compute the dot product between two Real grids
/*! Uses double precision internally */
struct GridDotProduct : public KernelBase {
GridDotProduct(const Grid<Real> &a, const Grid<Real> &b)
: KernelBase(&a, 0), a(a), b(b), result(0.0)
{
runMessage();
run();
}
inline void op(IndexInt idx, const Grid<Real> &a, const Grid<Real> &b, double &result)
{
result += (a[idx] * b[idx]);
}
inline operator double()
{
return result;
}
inline double &getRet()
{
return result;
}
inline const Grid<Real> &getArg0()
{
return a;
}
typedef Grid<Real> type0;
inline const Grid<Real> &getArg1()
{
return b;
}
typedef Grid<Real> type1;
void runMessage()
{
debMsg("Executing kernel GridDotProduct ", 3);
debMsg("Kernel range"
<< " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
4);
};
void operator()(const tbb::blocked_range<IndexInt> &__r)
{
for (IndexInt idx = __r.begin(); idx != (IndexInt)__r.end(); idx++)
op(idx, a, b, result);
}
void run()
{
tbb::parallel_reduce(tbb::blocked_range<IndexInt>(0, size), *this);
}
GridDotProduct(GridDotProduct &o, tbb::split) : KernelBase(o), a(o.a), b(o.b), result(0.0)
{
}
void join(const GridDotProduct &o)
{
result += o.result;
}
const Grid<Real> &a;
const Grid<Real> &b;
double result;
};
;
//! Kernel: compute residual (init) and add to sigma
struct InitSigma : public KernelBase {
InitSigma(const FlagGrid &flags, Grid<Real> &dst, Grid<Real> &rhs, Grid<Real> &temp)
: KernelBase(&flags, 0), flags(flags), dst(dst), rhs(rhs), temp(temp), sigma(0)
{
runMessage();
run();
}
inline void op(IndexInt idx,
const FlagGrid &flags,
Grid<Real> &dst,
Grid<Real> &rhs,
Grid<Real> &temp,
double &sigma)
{
const double res = rhs[idx] - temp[idx];
dst[idx] = (Real)res;
// only compute residual in fluid region
if (flags.isFluid(idx))
sigma += res * res;
}
inline operator double()
{
return sigma;
}
inline double &getRet()
{
return sigma;
}
inline const FlagGrid &getArg0()
{
return flags;
}
typedef FlagGrid type0;
inline Grid<Real> &getArg1()
{
return dst;
}
typedef Grid<Real> type1;
inline Grid<Real> &getArg2()
{
return rhs;
}
typedef Grid<Real> type2;
inline Grid<Real> &getArg3()
{
return temp;
}
typedef Grid<Real> type3;
void runMessage()
{
debMsg("Executing kernel InitSigma ", 3);
debMsg("Kernel range"
<< " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
4);
};
void operator()(const tbb::blocked_range<IndexInt> &__r)
{
for (IndexInt idx = __r.begin(); idx != (IndexInt)__r.end(); idx++)
op(idx, flags, dst, rhs, temp, sigma);
}
void run()
{
tbb::parallel_reduce(tbb::blocked_range<IndexInt>(0, size), *this);
}
InitSigma(InitSigma &o, tbb::split)
: KernelBase(o), flags(o.flags), dst(o.dst), rhs(o.rhs), temp(o.temp), sigma(0)
{
}
void join(const InitSigma &o)
{
sigma += o.sigma;
}
const FlagGrid &flags;
Grid<Real> &dst;
Grid<Real> &rhs;
Grid<Real> &temp;
double sigma;
};
;
//! Kernel: update search vector
struct UpdateSearchVec : public KernelBase {
UpdateSearchVec(Grid<Real> &dst, Grid<Real> &src, Real factor)
: KernelBase(&dst, 0), dst(dst), src(src), factor(factor)
{
runMessage();
run();
}
inline void op(IndexInt idx, Grid<Real> &dst, Grid<Real> &src, Real factor) const
{
dst[idx] = src[idx] + factor * dst[idx];
}
inline Grid<Real> &getArg0()
{
return dst;
}
typedef Grid<Real> type0;
inline Grid<Real> &getArg1()
{
return src;
}
typedef Grid<Real> type1;
inline Real &getArg2()
{
return factor;
}
typedef Real type2;
void runMessage()
{
debMsg("Executing kernel UpdateSearchVec ", 3);
debMsg("Kernel range"
<< " x " << maxX << " y " << maxY << " z " << minZ << " - " << maxZ << " ",
4);
};
void operator()(const tbb::blocked_range<IndexInt> &__r) const
{
for (IndexInt idx = __r.begin(); idx != (IndexInt)__r.end(); idx++)
op(idx, dst, src, factor);
}
void run()
{
tbb::parallel_for(tbb::blocked_range<IndexInt>(0, size), *this);
}
Grid<Real> &dst;
Grid<Real> &src;
Real factor;
};
//*****************************************************************************
// CG class
template<class APPLYMAT>
GridCg<APPLYMAT>::GridCg(Grid<Real> &dst,
Grid<Real> &rhs,
Grid<Real> &residual,
Grid<Real> &search,
const FlagGrid &flags,
Grid<Real> &tmp,
std::vector<Grid<Real> *> matrixAVec,
std::vector<Grid<Real> *> rhsVec)
: GridCgInterface(),
mInited(false),
mIterations(0),
mDst(dst),
mRhs(rhs),
mResidual(residual),
mSearch(search),
mFlags(flags),
mTmp(tmp),
mMatrixA(matrixAVec),
mVecRhs(rhsVec),
mPcMethod(PC_None),
mpPCA0(nullptr),
mpPCAi(nullptr),
mpPCAj(nullptr),
mpPCAk(nullptr),
mMG(nullptr),
mSigma(0.),
mAccuracy(VECTOR_EPSILON),
mResNorm(1e20)
{
}
template<class APPLYMAT> void GridCg<APPLYMAT>::doInit()
{
mInited = true;
mIterations = 0;
mDst.clear();
mResidual.copyFrom(mRhs); // p=0, residual = b
if (mPcMethod == PC_ICP) {
assertMsg(mDst.is3D(), "ICP only supports 3D grids so far");
InitPreconditionIncompCholesky(mFlags,
*mpPCA0,
*mpPCAi,
*mpPCAj,
*mpPCAk,
*mMatrixA[0],
*mMatrixA[1],
*mMatrixA[2],
*mMatrixA[3]);
ApplyPreconditionIncompCholesky(mTmp,
mResidual,
mFlags,
*mpPCA0,
*mpPCAi,
*mpPCAj,
*mpPCAk,
*mMatrixA[0],
*mMatrixA[1],
*mMatrixA[2],
*mMatrixA[3]);
}
else if (mPcMethod == PC_mICP) {
assertMsg(mDst.is3D(), "mICP only supports 3D grids so far");
InitPreconditionModifiedIncompCholesky2(
mFlags, *mpPCA0, *mMatrixA[0], *mMatrixA[1], *mMatrixA[2], *mMatrixA[3]);
ApplyPreconditionModifiedIncompCholesky2(
mTmp, mResidual, mFlags, *mpPCA0, *mMatrixA[0], *mMatrixA[1], *mMatrixA[2], *mMatrixA[3]);
}
else if (mPcMethod == PC_MGP) {
InitPreconditionMultigrid(
mMG, *mMatrixA[0], *mMatrixA[1], *mMatrixA[2], *mMatrixA[3], mAccuracy);
ApplyPreconditionMultigrid(mMG, mTmp, mResidual);
}
else {
mTmp.copyFrom(mResidual);
}
mSearch.copyFrom(mTmp);
mSigma = GridDotProduct(mTmp, mResidual);
}
template<class APPLYMAT> bool GridCg<APPLYMAT>::iterate()
{
if (!mInited)
doInit();
mIterations++;
// create matrix application operator passed as template argument,
// this could reinterpret the mpA pointers (not so clean right now)
// tmp = applyMat(search)
APPLYMAT(mFlags, mTmp, mSearch, mMatrixA, mVecRhs);
// alpha = sigma/dot(tmp, search)
Real dp = GridDotProduct(mTmp, mSearch);
Real alpha = 0.;
if (fabs(dp) > 0.)
alpha = mSigma / (Real)dp;
gridScaledAdd<Real, Real>(mDst, mSearch, alpha); // dst += search * alpha
gridScaledAdd<Real, Real>(mResidual, mTmp, -alpha); // residual += tmp * -alpha
if (mPcMethod == PC_ICP)
ApplyPreconditionIncompCholesky(mTmp,
mResidual,
mFlags,
*mpPCA0,
*mpPCAi,
*mpPCAj,
*mpPCAk,
*mMatrixA[0],
*mMatrixA[1],
*mMatrixA[2],
*mMatrixA[3]);
else if (mPcMethod == PC_mICP)
ApplyPreconditionModifiedIncompCholesky2(
mTmp, mResidual, mFlags, *mpPCA0, *mMatrixA[0], *mMatrixA[1], *mMatrixA[2], *mMatrixA[3]);
else if (mPcMethod == PC_MGP)
ApplyPreconditionMultigrid(mMG, mTmp, mResidual);
else
mTmp.copyFrom(mResidual);
// use the l2 norm of the residual for convergence check? (usually max norm is recommended
// instead)
if (this->mUseL2Norm) {
mResNorm = GridSumSqr(mResidual).sum;
}
else {
mResNorm = mResidual.getMaxAbs();
}
// abort here to safe some work...
if (mResNorm < mAccuracy) {
mSigma = mResNorm; // this will be returned later on to the caller...
return false;
}
Real sigmaNew = GridDotProduct(mTmp, mResidual);
Real beta = sigmaNew / mSigma;
// search = tmp + beta * search
UpdateSearchVec(mSearch, mTmp, beta);
debMsg("GridCg::iterate i=" << mIterations << " sigmaNew=" << sigmaNew << " sigmaLast=" << mSigma
<< " alpha=" << alpha << " beta=" << beta << " ",
CG_DEBUGLEVEL);
mSigma = sigmaNew;
if (!(mResNorm < 1e35)) {
if (mPcMethod == PC_MGP) {
// diverging solves can be caused by the static multigrid mode, we cannot detect this here,
// though only the pressure solve call "knows" whether the MG is static or dynamics...
debMsg(
"GridCg::iterate: Warning - this diverging solve can be caused by the 'static' mode of "
"the MG preconditioner. If the static mode is active, try switching to dynamic.",
1);
}
errMsg("GridCg::iterate: The CG solver diverged, residual norm > 1e30, stopping.");
}
// debMsg("PB-CG-Norms::p"<<sqrt( GridOpNormNosqrt(mpDst, mpFlags).getValue() ) <<"
// search"<<sqrt( GridOpNormNosqrt(mpSearch, mpFlags).getValue(), CG_DEBUGLEVEL ) <<" res"<<sqrt(
// GridOpNormNosqrt(mpResidual, mpFlags).getValue() ) <<" tmp"<<sqrt( GridOpNormNosqrt(mpTmp,
// mpFlags).getValue() ), CG_DEBUGLEVEL ); // debug
return true;
}
template<class APPLYMAT> void GridCg<APPLYMAT>::solve(int maxIter)
{
for (int iter = 0; iter < maxIter; iter++) {
if (!iterate())
iter = maxIter;
}
return;
}
static bool gPrint2dWarning = true;
template<class APPLYMAT>
void GridCg<APPLYMAT>::setICPreconditioner(
PreconditionType method, Grid<Real> *A0, Grid<Real> *Ai, Grid<Real> *Aj, Grid<Real> *Ak)
{
assertMsg(method == PC_ICP || method == PC_mICP,
"GridCg<APPLYMAT>::setICPreconditioner: Invalid method specified.");
mPcMethod = method;
if ((!A0->is3D())) {
if (gPrint2dWarning) {
debMsg("ICP/mICP pre-conditioning only supported in 3D for now, disabling it.", 1);
gPrint2dWarning = false;
}
mPcMethod = PC_None;
}
mpPCA0 = A0;
mpPCAi = Ai;
mpPCAj = Aj;
mpPCAk = Ak;
}
template<class APPLYMAT>
void GridCg<APPLYMAT>::setMGPreconditioner(PreconditionType method, GridMg *MG)
{
assertMsg(method == PC_MGP, "GridCg<APPLYMAT>::setMGPreconditioner: Invalid method specified.");
mPcMethod = method;
mMG = MG;
}
// explicit instantiation
template class GridCg<ApplyMatrix>;
template class GridCg<ApplyMatrix2D>;
template class GridCg<ApplyMatrixViscosityU>;
template class GridCg<ApplyMatrixViscosityV>;
template class GridCg<ApplyMatrixViscosityW>;
//*****************************************************************************
// diffusion for real and vec grids, e.g. for viscosity
//! do a CG solve for diffusion; note: diffusion coefficient alpha given in grid space,
// rescale in python file for discretization independence (or physical correspondence)
// see lidDrivenCavity.py for an example
void cgSolveDiffusion(const FlagGrid &flags,
GridBase &grid,
Real alpha = 0.25,
Real cgMaxIterFac = 1.0,
Real cgAccuracy = 1e-4)
{
// reserve temp grids
FluidSolver *parent = flags.getParent();
Grid<Real> rhs(parent);
Grid<Real> residual(parent), search(parent), tmp(parent);
Grid<Real> A0(parent), Ai(parent), Aj(parent), Ak(parent);
// setup matrix and boundaries
FlagGrid flagsDummy(parent);
flagsDummy.setConst(FlagGrid::TypeFluid);
MakeLaplaceMatrix(flagsDummy, A0, Ai, Aj, Ak);
FOR_IJK(flags)
{
if (flags.isObstacle(i, j, k)) {
Ai(i, j, k) = Aj(i, j, k) = Ak(i, j, k) = 0.0;
A0(i, j, k) = 1.0;
}
else {
Ai(i, j, k) *= alpha;
Aj(i, j, k) *= alpha;
Ak(i, j, k) *= alpha;
A0(i, j, k) *= alpha;
A0(i, j, k) += 1.;
}
}
GridCgInterface *gcg;
// note , no preconditioning for now...
const int maxIter = (int)(cgMaxIterFac * flags.getSize().max()) * (flags.is3D() ? 1 : 4);
if (grid.getType() & GridBase::TypeReal) {
Grid<Real> &u = ((Grid<Real> &)grid);
rhs.copyFrom(u);
vector<Grid<Real> *> matA{&A0, &Ai, &Aj};
if (flags.is3D()) {
matA.push_back(&Ak);
gcg = new GridCg<ApplyMatrix>(u, rhs, residual, search, flags, tmp, matA);
}
else {
gcg = new GridCg<ApplyMatrix2D>(u, rhs, residual, search, flags, tmp, matA);
}
gcg->setAccuracy(cgAccuracy);
gcg->solve(maxIter);
debMsg("FluidSolver::solveDiffusion iterations:" << gcg->getIterations()
<< ", res:" << gcg->getSigma(),
CG_DEBUGLEVEL);
}
else if ((grid.getType() & GridBase::TypeVec3) || (grid.getType() & GridBase::TypeMAC)) {
Grid<Vec3> &vec = ((Grid<Vec3> &)grid);
Grid<Real> u(parent);
vector<Grid<Real> *> matA{&A0, &Ai, &Aj};
// core solve is same as for a regular real grid
if (flags.is3D()) {
matA.push_back(&Ak);
gcg = new GridCg<ApplyMatrix>(u, rhs, residual, search, flags, tmp, matA);
}
else {
gcg = new GridCg<ApplyMatrix2D>(u, rhs, residual, search, flags, tmp, matA);
}
gcg->setAccuracy(cgAccuracy);
// diffuse every component separately
for (int component = 0; component < (grid.is3D() ? 3 : 2); ++component) {
getComponent(vec, u, component);
gcg->forceReinit();
rhs.copyFrom(u);
gcg->solve(maxIter);
debMsg("FluidSolver::solveDiffusion vec3, iterations:" << gcg->getIterations()
<< ", res:" << gcg->getSigma(),
CG_DEBUGLEVEL);
setComponent(u, vec, component);
}
}
else {
errMsg("cgSolveDiffusion: Grid Type is not supported (only Real, Vec3, MAC, or Levelset)");
}
delete gcg;
}
static PyObject *_W_0(PyObject *_self, PyObject *_linargs, PyObject *_kwds)
{
try {
PbArgs _args(_linargs, _kwds);
FluidSolver *parent = _args.obtainParent();
bool noTiming = _args.getOpt<bool>("notiming", -1, 0);
pbPreparePlugin(parent, "cgSolveDiffusion", !noTiming);
PyObject *_retval = nullptr;
{
ArgLocker _lock;
const FlagGrid &flags = *_args.getPtr<FlagGrid>("flags", 0, &_lock);
GridBase &grid = *_args.getPtr<GridBase>("grid", 1, &_lock);
Real alpha = _args.getOpt<Real>("alpha", 2, 0.25, &_lock);
Real cgMaxIterFac = _args.getOpt<Real>("cgMaxIterFac", 3, 1.0, &_lock);
Real cgAccuracy = _args.getOpt<Real>("cgAccuracy", 4, 1e-4, &_lock);
_retval = getPyNone();
cgSolveDiffusion(flags, grid, alpha, cgMaxIterFac, cgAccuracy);
_args.check();
}
pbFinalizePlugin(parent, "cgSolveDiffusion", !noTiming);
return _retval;
}
catch (std::exception &e) {
pbSetError("cgSolveDiffusion", e.what());
return 0;
}
}
static const Pb::Register _RP_cgSolveDiffusion("", "cgSolveDiffusion", _W_0);
extern "C" {
void PbRegister_cgSolveDiffusion()
{
KEEP_UNUSED(_RP_cgSolveDiffusion);
}
}
}; // namespace Manta