blender/intern/cycles/kernel/geom/geom_qbvh_volume_all.h
Thomas Dinges b3def11f5b Cycles: Record all possible volume intersections for SSS and camera checks
This replaces sequential ray moving followed with scene intersection with
single BVH traversal, which gives us all possible intersections.

Only implemented for CPU, due to qsort and a bigger memory usage on GPU
which we rather avoid. GPU still uses the regular bvh volume intersection code, while CPU now uses the new code.

This improves render performance for scenes with:
a) Camera inside volume mesh
b) SSS mesh intersecting a volume mesh/domain

In simple volume files (not much geometry) performance is roughly the same
(slightly faster). In files with a lot of geometry, the performance
increase is larger. bmps.blend with a volume shader and camera inside the
mesh, it renders ~10% faster here.

Patch by Sergey and myself.

Differential Revision: https://developer.blender.org/D1264
2015-04-29 23:31:06 +02:00

447 lines
14 KiB
C

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation,
* and code copyright 2009-2012 Intel Corporation
*
* Modifications Copyright 2011-2014, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is a template BVH traversal function for volumes, where
* various features can be enabled/disabled. This way we can compile optimized
* versions for each case without new features slowing things down.
*
* BVH_INSTANCING: object instancing
* BVH_HAIR: hair curve rendering
* BVH_MOTION: motion blur rendering
*
*/
ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
const uint max_hits)
{
/* TODO(sergey):
* - Test if pushing distance on the stack helps.
* - Likely and unlikely for if() statements.
* - Test restrict attribute for pointers.
*/
/* Traversal stack in CUDA thread-local memory. */
QBVHStackItem traversalStack[BVH_QSTACK_SIZE];
traversalStack[0].addr = ENTRYPOINT_SENTINEL;
/* Traversal variables in registers. */
int stackPtr = 0;
int nodeAddr = kernel_data.bvh.root;
/* Ray parameters in registers. */
const float tmax = ray->t;
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
float isect_t = tmax;
const uint visibility = PATH_RAY_ALL_VISIBILITY;
#if BVH_FEATURE(BVH_MOTION)
Transform ob_tfm;
#endif
#ifndef __KERNEL_SSE41__
if(!isfinite(P.x)) {
return false;
}
#endif
#if BVH_FEATURE(BVH_INSTANCING)
int num_hits_in_instance = 0;
#endif
uint num_hits = 0;
isect_array->t = tmax;
ssef tnear(0.0f), tfar(isect_t);
sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
float3 P_idir = P*idir;
sse3f P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
#else
sse3f org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
/* Offsets to select the side that becomes the lower or upper bound. */
int near_x, near_y, near_z;
int far_x, far_y, far_z;
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
IsectPrecalc isect_precalc;
triangle_intersect_precalc(dir, &isect_precalc);
/* Traversal loop. */
do {
do {
/* Traverse internal nodes. */
while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) {
ssef dist;
int traverseChild = qbvh_node_intersect(kg,
tnear,
tfar,
#ifdef __KERNEL_AVX2__
P_idir4,
#else
org,
#endif
idir4,
near_x, near_y, near_z,
far_x, far_y, far_z,
nodeAddr,
&dist);
if(traverseChild != 0) {
float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_QNODE_SIZE+6);
/* One child is hit, continue with that child. */
int r = __bscf(traverseChild);
if(traverseChild == 0) {
nodeAddr = __float_as_int(cnodes[r]);
continue;
}
/* Two children are hit, push far child, and continue with
* closer child.
*/
int c0 = __float_as_int(cnodes[r]);
float d0 = ((float*)&dist)[r];
r = __bscf(traverseChild);
int c1 = __float_as_int(cnodes[r]);
float d1 = ((float*)&dist)[r];
if(traverseChild == 0) {
if(d1 < d0) {
nodeAddr = c1;
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = c0;
traversalStack[stackPtr].dist = d0;
continue;
}
else {
nodeAddr = c0;
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = c1;
traversalStack[stackPtr].dist = d1;
continue;
}
}
/* Here starts the slow path for 3 or 4 hit children. We push
* all nodes onto the stack to sort them there.
*/
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = c1;
traversalStack[stackPtr].dist = d1;
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = c0;
traversalStack[stackPtr].dist = d0;
/* Three children are hit, push all onto stack and sort 3
* stack items, continue with closest child.
*/
r = __bscf(traverseChild);
int c2 = __float_as_int(cnodes[r]);
float d2 = ((float*)&dist)[r];
if(traverseChild == 0) {
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = c2;
traversalStack[stackPtr].dist = d2;
qbvh_stack_sort(&traversalStack[stackPtr],
&traversalStack[stackPtr - 1],
&traversalStack[stackPtr - 2]);
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
continue;
}
/* Four children are hit, push all onto stack and sort 4
* stack items, continue with closest child.
*/
r = __bscf(traverseChild);
int c3 = __float_as_int(cnodes[r]);
float d3 = ((float*)&dist)[r];
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = c3;
traversalStack[stackPtr].dist = d3;
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = c2;
traversalStack[stackPtr].dist = d2;
qbvh_stack_sort(&traversalStack[stackPtr],
&traversalStack[stackPtr - 1],
&traversalStack[stackPtr - 2],
&traversalStack[stackPtr - 3]);
}
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
}
/* If node is leaf, fetch triangle list. */
if(nodeAddr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-nodeAddr-1)*BVH_QNODE_LEAF_SIZE);
int primAddr = __float_as_int(leaf.x);
#if BVH_FEATURE(BVH_INSTANCING)
if(primAddr >= 0) {
#endif
int primAddr2 = __float_as_int(leaf.y);
const uint type = __float_as_int(leaf.w);
const uint p_type = type & PRIMITIVE_ALL;
bool hit;
/* Pop. */
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
/* Primitive intersection. */
switch(p_type) {
case PRIMITIVE_TRIANGLE: {
for(; primAddr < primAddr2; primAddr++) {
kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
/* Only primitives from volume object. */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
/* Intersect ray against primitive. */
hit = triangle_intersect(kg, &isect_precalc, isect_array, P, visibility, object, primAddr);
if(hit) {
/* Move on to next entry in intersections array. */
isect_array++;
num_hits++;
#if BVH_FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
#endif
isect_array->t = isect_t;
if(num_hits == max_hits) {
#if BVH_FEATURE(BVH_INSTANCING)
#if BVH_FEATURE(BVH_MOTION)
float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir));
#else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
float t_fac = len(transform_direction(&tfm, 1.0f/idir));
#endif
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
#endif /* BVH_FEATURE(BVH_INSTANCING) */
return num_hits;
}
}
}
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
for(; primAddr < primAddr2; primAddr++) {
kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
/* Only primitives from volume object. */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
/* Intersect ray against primitive. */
hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, visibility, object, primAddr);
if(hit) {
/* Move on to next entry in intersections array. */
isect_array++;
num_hits++;
#if BVH_FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
#endif
isect_array->t = isect_t;
if(num_hits == max_hits) {
#if BVH_FEATURE(BVH_INSTANCING)
# if BVH_FEATURE(BVH_MOTION)
float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir));
# else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
float t_fac = len(transform_direction(&tfm, 1.0f/idir));
#endif
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
#endif /* BVH_FEATURE(BVH_INSTANCING) */
return num_hits;
}
}
}
break;
}
#endif
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
for(; primAddr < primAddr2; primAddr++) {
kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type);
/* Only primitives from volume object. */
uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object;
int object_flag = kernel_tex_fetch(__object_flag, tri_object);
if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
/* Intersect ray against primitive. */
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE)
hit = bvh_cardinal_curve_intersect(kg, isect_array, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0);
else
hit = bvh_curve_intersect(kg, isect_array, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0);
if(hit) {
/* Move on to next entry in intersections array. */
isect_array++;
num_hits++;
#if BVH_FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
#endif
isect_array->t = isect_t;
if(num_hits == max_hits) {
#if BVH_FEATURE(BVH_INSTANCING)
# if BVH_FEATURE(BVH_MOTION)
float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir));
# else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
float t_fac = len(transform_direction(&tfm, 1.0f/idir));
#endif
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
#endif /* BVH_FEATURE(BVH_INSTANCING) */
return num_hits;
}
}
}
break;
}
#endif
}
}
#if BVH_FEATURE(BVH_INSTANCING)
else {
/* Instance push. */
object = kernel_tex_fetch(__prim_object, -primAddr-1);
int object_flag = kernel_tex_fetch(__object_flag, object);
if(object_flag & SD_OBJECT_HAS_VOLUME) {
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm);
#else
bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
#endif
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
tfar = ssef(isect_t);
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
#else
org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
triangle_intersect_precalc(dir, &isect_precalc);
num_hits_in_instance = 0;
isect_array->t = isect_t;
++stackPtr;
kernel_assert(stackPtr < BVH_QSTACK_SIZE);
traversalStack[stackPtr].addr = ENTRYPOINT_SENTINEL;
nodeAddr = kernel_tex_fetch(__object_node, object);
}
else {
/* Pop. */
object = OBJECT_NONE;
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
}
}
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(nodeAddr != ENTRYPOINT_SENTINEL);
#if BVH_FEATURE(BVH_INSTANCING)
if(stackPtr >= 0) {
kernel_assert(object != OBJECT_NONE);
/* Instance pop. */
if(num_hits_in_instance) {
float t_fac;
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_tfm);
#else
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
#endif
triangle_intersect_precalc(dir, &isect_precalc);
/* Scale isect->t to adjust for instancing. */
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
}
else {
float ignore_t = FLT_MAX;
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_tfm);
#else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
#endif
triangle_intersect_precalc(dir, &isect_precalc);
}
if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; }
if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; }
if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; }
tfar = ssef(isect_t);
idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z));
#ifdef __KERNEL_AVX2__
P_idir = P*idir;
P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z);
#else
org = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
#endif
triangle_intersect_precalc(dir, &isect_precalc);
isect_t = tmax;
isect_array->t = isect_t;
object = OBJECT_NONE;
nodeAddr = traversalStack[stackPtr].addr;
--stackPtr;
}
#endif /* FEATURE(BVH_INSTANCING) */
} while(nodeAddr != ENTRYPOINT_SENTINEL);
return num_hits;
}