forked from bartvdbraak/blender
260 lines
6.3 KiB
C
260 lines
6.3 KiB
C
/*
|
|
* Copyright 2011, Blender Foundation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Voronoi Distances */
|
|
|
|
__device float voronoi_distance(NodeDistanceMetric distance_metric, float3 d, float e)
|
|
{
|
|
if(distance_metric == NODE_VORONOI_DISTANCE_SQUARED)
|
|
return dot(d, d);
|
|
if(distance_metric == NODE_VORONOI_ACTUAL_DISTANCE)
|
|
return len(d);
|
|
if(distance_metric == NODE_VORONOI_MANHATTAN)
|
|
return fabsf(d.x) + fabsf(d.y) + fabsf(d.z);
|
|
if(distance_metric == NODE_VORONOI_CHEBYCHEV)
|
|
return fmaxf(fabsf(d.x), fmaxf(fabsf(d.y), fabsf(d.z)));
|
|
if(distance_metric == NODE_VORONOI_MINKOVSKY_H)
|
|
return sqrtf(fabsf(d.x)) + sqrtf(fabsf(d.y)) + sqrtf(fabsf(d.y));
|
|
if(distance_metric == NODE_VORONOI_MINKOVSKY_4)
|
|
return sqrtf(sqrtf(dot(d*d, d*d)));
|
|
if(distance_metric == NODE_VORONOI_MINKOVSKY)
|
|
return powf(powf(fabsf(d.x), e) + powf(fabsf(d.y), e) + powf(fabsf(d.z), e), 1.0f/e);
|
|
|
|
return 0.0f;
|
|
}
|
|
|
|
/* Voronoi / Worley like */
|
|
|
|
__device_noinline void voronoi(float3 p, NodeDistanceMetric distance_metric, float e, float da[4], float3 pa[4])
|
|
{
|
|
/* returns distances in da and point coords in pa */
|
|
int xx, yy, zz, xi, yi, zi;
|
|
|
|
xi = (int)floorf(p.x);
|
|
yi = (int)floorf(p.y);
|
|
zi = (int)floorf(p.z);
|
|
|
|
da[0] = 1e10f;
|
|
da[1] = 1e10f;
|
|
da[2] = 1e10f;
|
|
da[3] = 1e10f;
|
|
|
|
pa[0] = make_float3(0.0f, 0.0f, 0.0f);
|
|
pa[1] = make_float3(0.0f, 0.0f, 0.0f);
|
|
pa[2] = make_float3(0.0f, 0.0f, 0.0f);
|
|
pa[3] = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(xx = xi-1; xx <= xi+1; xx++) {
|
|
for(yy = yi-1; yy <= yi+1; yy++) {
|
|
for(zz = zi-1; zz <= zi+1; zz++) {
|
|
float3 ip = make_float3((float)xx, (float)yy, (float)zz);
|
|
float3 vp = cellnoise_color(ip);
|
|
float3 pd = p - (vp + ip);
|
|
float d = voronoi_distance(distance_metric, pd, e);
|
|
|
|
vp += ip;
|
|
|
|
if(d < da[0]) {
|
|
da[3] = da[2];
|
|
da[2] = da[1];
|
|
da[1] = da[0];
|
|
da[0] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = pa[1];
|
|
pa[1] = pa[0];
|
|
pa[0] = vp;
|
|
}
|
|
else if(d < da[1]) {
|
|
da[3] = da[2];
|
|
da[2] = da[1];
|
|
da[1] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = pa[1];
|
|
pa[1] = vp;
|
|
}
|
|
else if(d < da[2]) {
|
|
da[3] = da[2];
|
|
da[2] = d;
|
|
|
|
pa[3] = pa[2];
|
|
pa[2] = vp;
|
|
}
|
|
else if(d < da[3]) {
|
|
da[3] = d;
|
|
pa[3] = vp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
__device float voronoi_Fn(float3 p, int n)
|
|
{
|
|
float da[4];
|
|
float3 pa[4];
|
|
|
|
voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
|
|
|
|
return da[n];
|
|
}
|
|
|
|
__device float voronoi_FnFn(float3 p, int n1, int n2)
|
|
{
|
|
float da[4];
|
|
float3 pa[4];
|
|
|
|
voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
|
|
|
|
return da[n2] - da[n1];
|
|
}
|
|
|
|
__device float voronoi_F1(float3 p) { return voronoi_Fn(p, 0); }
|
|
__device float voronoi_F2(float3 p) { return voronoi_Fn(p, 1); }
|
|
__device float voronoi_F3(float3 p) { return voronoi_Fn(p, 2); }
|
|
__device float voronoi_F4(float3 p) { return voronoi_Fn(p, 3); }
|
|
__device float voronoi_F1F2(float3 p) { return voronoi_FnFn(p, 0, 1); }
|
|
|
|
__device float voronoi_Cr(float3 p)
|
|
{
|
|
/* crackle type pattern, just a scale/clamp of F2-F1 */
|
|
float t = 10.0f*voronoi_F1F2(p);
|
|
return (t > 1.0f)? 1.0f: t;
|
|
}
|
|
|
|
__device float voronoi_F1S(float3 p) { return 2.0f*voronoi_F1(p) - 1.0f; }
|
|
__device float voronoi_F2S(float3 p) { return 2.0f*voronoi_F2(p) - 1.0f; }
|
|
__device float voronoi_F3S(float3 p) { return 2.0f*voronoi_F3(p) - 1.0f; }
|
|
__device float voronoi_F4S(float3 p) { return 2.0f*voronoi_F4(p) - 1.0f; }
|
|
__device float voronoi_F1F2S(float3 p) { return 2.0f*voronoi_F1F2(p) - 1.0f; }
|
|
__device float voronoi_CrS(float3 p) { return 2.0f*voronoi_Cr(p) - 1.0f; }
|
|
|
|
/* Noise Bases */
|
|
|
|
__device float noise_basis(float3 p, NodeNoiseBasis basis)
|
|
{
|
|
/* Only Perlin enabled for now, others break CUDA compile by making kernel
|
|
too big, with compile using > 4GB, due to everything being inlined. */
|
|
|
|
#if 0
|
|
if(basis == NODE_NOISE_PERLIN)
|
|
#endif
|
|
return noise(p);
|
|
#if 0
|
|
if(basis == NODE_NOISE_VORONOI_F1)
|
|
return voronoi_F1S(p);
|
|
if(basis == NODE_NOISE_VORONOI_F2)
|
|
return voronoi_F2S(p);
|
|
if(basis == NODE_NOISE_VORONOI_F3)
|
|
return voronoi_F3S(p);
|
|
if(basis == NODE_NOISE_VORONOI_F4)
|
|
return voronoi_F4S(p);
|
|
if(basis == NODE_NOISE_VORONOI_F2_F1)
|
|
return voronoi_F1F2S(p);
|
|
if(basis == NODE_NOISE_VORONOI_CRACKLE)
|
|
return voronoi_CrS(p);
|
|
if(basis == NODE_NOISE_CELL_NOISE)
|
|
return cellnoise(p);
|
|
|
|
return 0.0f;
|
|
#endif
|
|
}
|
|
|
|
/* Soft/Hard Noise */
|
|
|
|
__device float noise_basis_hard(float3 p, NodeNoiseBasis basis, int hard)
|
|
{
|
|
float t = noise_basis(p, basis);
|
|
return (hard)? fabsf(2.0f*t - 1.0f): t;
|
|
}
|
|
|
|
/* Waves */
|
|
|
|
__device float noise_wave(NodeWaveType wave, float a)
|
|
{
|
|
if(wave == NODE_WAVE_SINE) {
|
|
return 0.5f + 0.5f*sin(a);
|
|
}
|
|
else if(wave == NODE_WAVE_SAW) {
|
|
float b = 2.0f*M_PI_F;
|
|
int n = (int)(a / b);
|
|
a -= n*b;
|
|
if(a < 0.0f) a += b;
|
|
|
|
return a / b;
|
|
}
|
|
else if(wave == NODE_WAVE_TRI) {
|
|
float b = 2.0f*M_PI_F;
|
|
float rmax = 1.0f;
|
|
|
|
return rmax - 2.0f*fabsf(floorf((a*(1.0f/b))+0.5f) - (a*(1.0f/b)));
|
|
}
|
|
|
|
return 0.0f;
|
|
}
|
|
|
|
/* Turbulence */
|
|
|
|
__device_noinline float noise_turbulence(float3 p, NodeNoiseBasis basis, float octaves, int hard)
|
|
{
|
|
float fscale = 1.0f;
|
|
float amp = 1.0f;
|
|
float sum = 0.0f;
|
|
int i, n;
|
|
|
|
octaves = clamp(octaves, 0.0f, 16.0f);
|
|
n= (int)octaves;
|
|
|
|
for(i = 0; i <= n; i++) {
|
|
float t = noise_basis(fscale*p, basis);
|
|
|
|
if(hard)
|
|
t = fabsf(2.0f*t - 1.0f);
|
|
|
|
sum += t*amp;
|
|
amp *= 0.5f;
|
|
fscale *= 2.0f;
|
|
}
|
|
|
|
float rmd = octaves - floor(octaves);
|
|
|
|
if(rmd != 0.0f) {
|
|
float t = noise_basis(fscale*p, basis);
|
|
|
|
if(hard)
|
|
t = fabsf(2.0f*t - 1.0f);
|
|
|
|
float sum2 = sum + t*amp;
|
|
|
|
sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
|
|
sum2 *= ((float)(1 << (n+1))/(float)((1 << (n+2)) - 1));
|
|
|
|
return (1.0f - rmd)*sum + rmd*sum2;
|
|
}
|
|
else {
|
|
sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
|
|
return sum;
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|