blender/intern/cycles/bvh/bvh_node.cpp
Sergey Sharybin 1ad04c7d65 Cycles: Store time in BVH nodes
This way we can stop traversing BVH node early on.

Gives about 2-2.5x times render time improvement with 3 BVH steps.
Hopefully this gives no measurable performance loss for scenes with
single BVH step.

Traversal is currently only implemented for QBVH, meaning old CPUs
and GPU do not benefit from this change.
2017-01-20 12:46:18 +01:00

217 lines
5.0 KiB
C++

/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh.h"
#include "bvh_build.h"
#include "bvh_node.h"
#include "util_debug.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
/* BVH Node */
int BVHNode::getSubtreeSize(BVH_STAT stat) const
{
int cnt = 0;
switch(stat)
{
case BVH_STAT_NODE_COUNT:
cnt = 1;
break;
case BVH_STAT_LEAF_COUNT:
cnt = is_leaf() ? 1 : 0;
break;
case BVH_STAT_INNER_COUNT:
cnt = is_leaf() ? 0 : 1;
break;
case BVH_STAT_TRIANGLE_COUNT:
cnt = is_leaf() ? reinterpret_cast<const LeafNode*>(this)->num_triangles() : 0;
break;
case BVH_STAT_CHILDNODE_COUNT:
cnt = num_children();
break;
case BVH_STAT_QNODE_COUNT:
cnt = 1;
for(int i = 0; i < num_children(); i++) {
BVHNode *node = get_child(i);
if(node->is_leaf()) {
cnt += 1;
}
else {
for(int j = 0; j < node->num_children(); j++) {
cnt += node->get_child(j)->getSubtreeSize(stat);
}
}
}
return cnt;
case BVH_STAT_ALIGNED_COUNT:
if(!is_unaligned()) {
cnt = 1;
}
break;
case BVH_STAT_UNALIGNED_COUNT:
if(is_unaligned()) {
cnt = 1;
}
break;
case BVH_STAT_ALIGNED_INNER_COUNT:
if(!is_leaf()) {
bool has_unaligned = false;
for(int j = 0; j < num_children(); j++) {
has_unaligned |= get_child(j)->is_unaligned();
}
cnt += has_unaligned? 0: 1;
}
break;
case BVH_STAT_UNALIGNED_INNER_COUNT:
if(!is_leaf()) {
bool has_unaligned = false;
for(int j = 0; j < num_children(); j++) {
has_unaligned |= get_child(j)->is_unaligned();
}
cnt += has_unaligned? 1: 0;
}
break;
case BVH_STAT_ALIGNED_INNER_QNODE_COUNT:
{
bool has_unaligned = false;
for(int i = 0; i < num_children(); i++) {
BVHNode *node = get_child(i);
if(node->is_leaf()) {
has_unaligned |= node->is_unaligned();
}
else {
for(int j = 0; j < node->num_children(); j++) {
cnt += node->get_child(j)->getSubtreeSize(stat);
has_unaligned |= node->get_child(j)->is_unaligned();
}
}
}
cnt += has_unaligned? 0: 1;
}
return cnt;
case BVH_STAT_UNALIGNED_INNER_QNODE_COUNT:
{
bool has_unaligned = false;
for(int i = 0; i < num_children(); i++) {
BVHNode *node = get_child(i);
if(node->is_leaf()) {
has_unaligned |= node->is_unaligned();
}
else {
for(int j = 0; j < node->num_children(); j++) {
cnt += node->get_child(j)->getSubtreeSize(stat);
has_unaligned |= node->get_child(j)->is_unaligned();
}
}
}
cnt += has_unaligned? 1: 0;
}
return cnt;
case BVH_STAT_ALIGNED_LEAF_COUNT:
cnt = (is_leaf() && !is_unaligned()) ? 1 : 0;
break;
case BVH_STAT_UNALIGNED_LEAF_COUNT:
cnt = (is_leaf() && is_unaligned()) ? 1 : 0;
break;
default:
assert(0); /* unknown mode */
}
if(!is_leaf())
for(int i = 0; i < num_children(); i++)
cnt += get_child(i)->getSubtreeSize(stat);
return cnt;
}
void BVHNode::deleteSubtree()
{
for(int i = 0; i < num_children(); i++)
if(get_child(i))
get_child(i)->deleteSubtree();
delete this;
}
float BVHNode::computeSubtreeSAHCost(const BVHParams& p, float probability) const
{
float SAH = probability * p.cost(num_children(), num_triangles());
for(int i = 0; i < num_children(); i++) {
BVHNode *child = get_child(i);
SAH += child->computeSubtreeSAHCost(p, probability * child->m_bounds.safe_area()/m_bounds.safe_area());
}
return SAH;
}
uint BVHNode::update_visibility()
{
if(!is_leaf() && m_visibility == 0) {
InnerNode *inner = (InnerNode*)this;
BVHNode *child0 = inner->children[0];
BVHNode *child1 = inner->children[1];
m_visibility = child0->update_visibility()|child1->update_visibility();
}
return m_visibility;
}
void BVHNode::update_time()
{
if(!is_leaf()) {
InnerNode *inner = (InnerNode*)this;
BVHNode *child0 = inner->children[0];
BVHNode *child1 = inner->children[1];
child0->update_time();
child1->update_time();
m_time_from = min(child0->m_time_from, child1->m_time_from);
m_time_to = max(child0->m_time_to, child1->m_time_to);
}
}
/* Inner Node */
void InnerNode::print(int depth) const
{
for(int i = 0; i < depth; i++)
printf(" ");
printf("inner node %p\n", (void*)this);
if(children[0])
children[0]->print(depth+1);
if(children[1])
children[1]->print(depth+1);
}
void LeafNode::print(int depth) const
{
for(int i = 0; i < depth; i++)
printf(" ");
printf("leaf node %d to %d\n", m_lo, m_hi);
}
CCL_NAMESPACE_END