keras/keras_core/trainers/trainer.py

455 lines
16 KiB
Python
Raw Normal View History

2023-06-09 19:37:31 +00:00
import platform
2023-04-18 04:26:04 +00:00
import warnings
2023-04-18 21:49:38 +00:00
2023-04-16 21:54:13 +00:00
from keras_core import backend
2023-04-18 04:26:04 +00:00
from keras_core import metrics as metrics_module
2023-04-18 21:49:38 +00:00
from keras_core import operations as ops
2023-04-25 19:59:32 +00:00
from keras_core import optimizers
from keras_core.saving import serialization_lib
2023-04-16 21:54:13 +00:00
from keras_core.trainers.compile_utils import CompileLoss
from keras_core.trainers.compile_utils import CompileMetrics
2023-06-03 17:36:26 +00:00
from keras_core.utils import traceback_utils
2023-04-19 23:25:56 +00:00
from keras_core.utils import tracking
2023-04-16 21:54:13 +00:00
2023-04-09 19:21:45 +00:00
class Trainer:
2023-04-17 21:56:37 +00:00
def __init__(self):
self._lock = False
2023-04-17 21:56:37 +00:00
self._run_eagerly = False
2023-06-11 02:28:03 +00:00
self._jit_compile = None
2023-04-17 21:56:37 +00:00
self.compiled = False
self.steps_per_execution = 1
2023-04-17 22:41:48 +00:00
2023-06-03 17:36:26 +00:00
@traceback_utils.filter_traceback
2023-04-19 23:25:56 +00:00
@tracking.no_automatic_dependency_tracking
2023-04-16 01:51:10 +00:00
def compile(
self,
optimizer="rmsprop",
2023-04-16 01:51:10 +00:00
loss=None,
loss_weights=None,
metrics=None,
weighted_metrics=None,
run_eagerly=False,
steps_per_execution=1,
jit_compile="auto",
2023-04-16 01:51:10 +00:00
):
2023-04-25 19:59:32 +00:00
self.optimizer = optimizers.get(optimizer)
2023-04-16 21:54:13 +00:00
if loss is not None:
self._compile_loss = CompileLoss(loss, loss_weights)
else:
self._compile_loss = None
if metrics is not None:
self._compile_metrics = CompileMetrics(metrics, weighted_metrics)
else:
self._compile_metrics = None
if jit_compile == "auto":
2023-06-09 19:42:21 +00:00
if model_supports_jit(self):
jit_compile = True
else:
jit_compile = False
2023-04-17 21:56:37 +00:00
if jit_compile and run_eagerly:
2023-04-18 04:26:04 +00:00
jit_compile = False
warnings.warn(
2023-04-27 03:42:23 +00:00
"If `run_eagerly` is True, then `jit_compile` "
"cannot also be True. Disabling `jit_compile`.",
2023-04-18 04:26:04 +00:00
stacklevel=2,
2023-04-17 22:41:48 +00:00
)
2023-04-09 19:21:45 +00:00
self.jit_compile = jit_compile
2023-04-16 01:51:10 +00:00
self.run_eagerly = run_eagerly
2023-04-17 21:56:37 +00:00
self.stop_training = False
self.compiled = True
2023-04-18 04:26:04 +00:00
self._loss_tracker = metrics_module.Mean(name="loss")
self.steps_per_execution = steps_per_execution
2023-04-09 19:21:45 +00:00
self._compile_config = serialization_lib.SerializableDict(
optimizer=optimizer,
loss=loss,
loss_weights=loss_weights,
metrics=metrics,
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
steps_per_execution=steps_per_execution,
jit_compile=jit_compile,
)
2023-04-16 01:51:10 +00:00
@property
def jit_compile(self):
2023-06-11 02:28:03 +00:00
if self._jit_compile is None:
# Value was never set. Resolve it now.
jit_compile = model_supports_jit(self)
self._jit_compile = jit_compile
2023-04-16 01:51:10 +00:00
return self._jit_compile
@jit_compile.setter
def jit_compile(self, value):
self._jit_compile = value
@property
def run_eagerly(self):
return self._run_eagerly
@run_eagerly.setter
def run_eagerly(self, value):
self._run_eagerly = value
2023-04-09 19:21:45 +00:00
@property
def metrics(self):
2023-04-18 04:26:04 +00:00
metrics = [self._loss_tracker]
2023-04-18 00:23:53 +00:00
metrics.extend(self._metrics[:])
if self._compile_metrics is not None and self._compile_metrics.built:
2023-04-17 22:41:48 +00:00
metrics += [self._compile_metrics]
2023-04-16 21:54:13 +00:00
return metrics
2023-04-09 19:21:45 +00:00
2023-04-18 21:49:38 +00:00
@property
def metrics_variables(self):
vars = []
for metric in self.metrics:
vars.extend(metric.variables)
return vars
2023-04-09 19:21:45 +00:00
def reset_metrics(self):
for m in self.metrics:
m.reset_state()
2023-04-16 01:51:10 +00:00
def compute_loss(self, x=None, y=None, y_pred=None, sample_weight=None):
"""Compute the total loss, validate it, and return it.
Subclasses can optionally override this method to provide custom loss
computation logic.
Example:
```python
class MyModel(Model):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss_tracker = metrics.Mean(name='loss')
def compute_loss(self, x, y, y_pred, sample_weight):
loss = ops.means((y_pred - y) ** 2)
loss += ops.sum(self.losses)
self.loss_tracker.update_state(loss)
return loss
def reset_metrics(self):
self.loss_tracker.reset_state()
@property
def metrics(self):
return [self.loss_tracker]
inputs = layers.Input(shape=(10,), name='my_input')
outputs = layers.Dense(10)(inputs)
model = MyModel(inputs, outputs)
model.add_loss(ops.sum(outputs))
optimizer = SGD()
model.compile(optimizer, loss='mse', steps_per_execution=10)
dataset = ...
model.fit(dataset, epochs=2, steps_per_epoch=10)
2023-04-16 21:54:13 +00:00
print(f"Custom loss: {model.loss_tracker.result()}")
2023-04-16 01:51:10 +00:00
```
Args:
x: Input data.
y: Target data.
y_pred: Predictions returned by the model (output of `model(x)`)
sample_weight: Sample weights for weighting the loss function.
Returns:
The total loss as a scalar tensor, or `None` if no loss results
(which is the case when called by `Model.test_step`).
"""
del x # The default implementation does not use `x`.
2023-04-16 21:54:13 +00:00
losses = []
2023-04-17 21:56:37 +00:00
if self._compile_loss is not None:
loss = self._compile_loss(y, y_pred, sample_weight)
2023-04-16 21:54:13 +00:00
if loss is not None:
losses.append(loss)
for loss in self.losses:
losses.append(ops.cast(loss, dtype=backend.floatx()))
2023-04-16 21:54:13 +00:00
if len(losses) == 0:
raise ValueError(
"No loss to compute. Provide a `loss` argument in `compile()`."
)
if len(losses) == 1:
2023-04-18 04:26:04 +00:00
total_loss = losses[0]
else:
total_loss = ops.sum(losses)
return total_loss
2023-04-16 01:51:10 +00:00
2023-04-18 21:49:38 +00:00
def compute_metrics(self, x, y, y_pred, sample_weight=None):
2023-04-16 01:51:10 +00:00
"""Update metric states and collect all metrics to be returned.
Subclasses can optionally override this method to provide custom metric
updating and collection logic.
Example:
```python
class MyModel(Sequential):
def compute_metrics(self, x, y, y_pred, sample_weight):
# This super call updates `self.compiled_metrics` and returns
# results for all metrics listed in `self.metrics`.
2023-04-27 03:42:23 +00:00
metric_results = super().compute_metrics(
x, y, y_pred, sample_weight)
2023-04-16 01:51:10 +00:00
# Note that `self.custom_metric` is not listed in `self.metrics`.
self.custom_metric.update_state(x, y, y_pred, sample_weight)
metric_results['custom_metric_name'] = self.custom_metric.result()
return metric_results
```
Args:
x: Input data.
y: Target data.
2023-04-27 03:42:23 +00:00
y_pred: Predictions returned by the model output of `model.call(x)`.
2023-04-16 01:51:10 +00:00
sample_weight: Sample weights for weighting the loss function.
Returns:
A `dict` containing values that will be passed to
2023-04-27 03:42:23 +00:00
`tf.keras.callbacks.CallbackList.on_train_batch_end()`. Typically,
the values of the metrics listed in `self.metrics` are returned.
Example: `{'loss': 0.2, 'accuracy': 0.7}`.
2023-04-16 01:51:10 +00:00
"""
del x # The default implementation does not use `x`.
2023-04-16 21:54:13 +00:00
if self._compile_metrics is not None:
self._compile_metrics.update_state(y, y_pred, sample_weight)
2023-04-16 01:51:10 +00:00
return self.get_metrics_result()
def get_metrics_result(self):
"""Returns the model's metrics values as a dict.
If any of the metric result is a dict (containing multiple metrics),
each of them gets added to the top level returned dict of this method.
Returns:
A `dict` containing values of the metrics listed in `self.metrics`.
Example:
`{'loss': 0.2, 'accuracy': 0.7}`.
"""
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return self._pythonify_logs(return_metrics)
2023-04-16 01:51:10 +00:00
def fit(
self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose="auto",
callbacks=None,
validation_split=0.0,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
validation_batch_size=None,
validation_freq=1,
):
2023-04-09 19:21:45 +00:00
raise NotImplementedError
def evaluate(
self,
x=None,
y=None,
batch_size=None,
verbose="auto",
sample_weight=None,
steps=None,
callbacks=None,
return_dict=False,
**kwargs,
):
2023-04-09 19:21:45 +00:00
raise NotImplementedError
def predict(
self, x, batch_size=None, verbose="auto", steps=None, callbacks=None
):
2023-04-09 19:21:45 +00:00
raise NotImplementedError
2023-04-17 22:41:48 +00:00
def train_on_batch(
self,
x,
y=None,
sample_weight=None,
class_weight=None,
return_dict=False,
):
"""Runs a single gradient update on a single batch of data.
Args:
x: Input data. Must be array-like.
y: Target data. Must be array-like.
sample_weight: Optional array of the same length as x, containing
weights to apply to the model's loss for each sample.
In the case of temporal data, you can pass a 2D array
with shape `(samples, sequence_length)`, to apply a different
weight to every timestep of every sample.
class_weight: Optional dictionary mapping class indices (integers)
to a weight (float) to apply to the model's loss for the samples
from this class during training. This can be useful to tell the
model to "pay more attention" to samples from an
under-represented class. When `class_weight` is specified
and targets have a rank of 2 or greater, either `y` must
be one-hot encoded, or an explicit final dimension of 1
must be included for sparse class labels.
return_dict: If `True`, loss and metric results are returned as a
dict, with each key being the name of the metric. If `False`,
they are returned as a list.
Returns:
A scalar loss value (when no metrics and `return_dict=False`),
a list of loss and metric values
(if there are metrics and `return_dict=False`), or a dict of
metric and loss values (if `return_dict=True`).
"""
raise NotImplementedError
def test_on_batch(
self,
x,
y=None,
sample_weight=None,
return_dict=False,
):
"""Test the model on a single batch of samples.
Args:
x: Input data. Must be array-like.
y: Target data. Must be array-like.
sample_weight: Optional array of the same length as x, containing
weights to apply to the model's loss for each sample.
In the case of temporal data, you can pass a 2D array
with shape `(samples, sequence_length)`, to apply a different
weight to every timestep of every sample.
return_dict: If `True`, loss and metric results are returned as a
dict, with each key being the name of the metric. If `False`,
they are returned as a list.
Returns:
A scalar loss value (when no metrics and `return_dict=False`),
a list of loss and metric values
(if there are metrics and `return_dict=False`), or a dict of
metric and loss values (if `return_dict=True`).
"""
raise NotImplementedError
def predict_on_batch(self, x):
"""Returns predictions for a single batch of samples.
Args:
x: Input data. It must be array-like.
Returns:
NumPy array(s) of predictions.
"""
raise NotImplementedError
2023-04-20 01:37:25 +00:00
def get_compile_config(self):
"""Returns a serialized config with information for compiling the model.
This method returns a config dictionary containing all the information
(optimizer, loss, metrics, etc.) with which the model was compiled.
Returns:
A dict containing information for compiling the model.
"""
if self.compiled and hasattr(self, "_compile_config"):
return self._compile_config.serialize()
def compile_from_config(self, config):
"""Compiles the model with the information given in config.
2023-04-20 01:37:25 +00:00
This method uses the information in the config (optimizer, loss,
metrics, etc.) to compile the model.
Args:
config: Dict containing information for compiling the model.
"""
has_overridden_compile = self.__class__.compile != Trainer.compile
if has_overridden_compile:
warnings.warn(
"`compile()` was not called as part of model loading "
"because the model's `compile()` method is custom. "
"All subclassed Models that have `compile()` "
"overridden should also override "
"`get_compile_config()` and `compile_from_config(config)`. "
"Alternatively, you can "
"call `compile()` manually after loading.",
stacklevel=2,
)
return
config = serialization_lib.deserialize_keras_object(config)
self.compile(**config)
if hasattr(self, "optimizer") and self.built:
# Create optimizer variables.
self.optimizer.build(self.trainable_variables)
2023-04-20 01:37:25 +00:00
2023-04-17 21:56:37 +00:00
def _should_eval(self, epoch, validation_freq):
epoch = epoch + 1 # one-index the user-facing epoch.
if isinstance(validation_freq, int):
return epoch % validation_freq == 0
elif isinstance(validation_freq, list):
return epoch in validation_freq
else:
raise ValueError(
"Expected `validation_freq` to be a list or int. "
f"Received: validation_freq={validation_freq} of the "
f"type {type(validation_freq)}."
)
2023-04-09 19:21:45 +00:00
2023-04-20 01:37:25 +00:00
def _pythonify_logs(self, logs):
result = {}
for key, value in logs.items():
try:
value = float(value)
except:
pass
result[key] = value
2023-04-19 22:24:35 +00:00
return result
2023-04-20 01:37:25 +00:00
def _flatten_metrics_in_order(self, logs):
2023-04-27 03:42:23 +00:00
"""Turns `logs` dict into a list as per key order of `metrics_names`."""
2023-04-20 01:37:25 +00:00
metric_names = [m.name for m in self.metrics]
results = []
for name in metric_names:
if name in logs:
results.append(logs[name])
for key in sorted(logs.keys()):
if key not in metric_names:
results.append(logs[key])
if len(results) == 1:
return results[0]
return results
2023-06-08 01:26:42 +00:00
def _assert_compile_called(self, method_name=None):
if not self.compiled:
msg = "You must call `compile()` before "
if metrics_module:
msg += "using the model."
else:
msg += f"calling `{method_name}()`."
raise ValueError(msg)
2023-06-09 19:37:31 +00:00
2023-06-09 19:42:21 +00:00
def model_supports_jit(model):
if platform.system() == "Darwin" and "arm" in platform.processor().lower():
if backend.backend() == "tensorflow":
import tensorflow as tf
if tf.config.list_physical_devices("GPU"):
return False
if all(x.supports_jit for x in model._flatten_layers()):
return True
return False