keras/keras_core/layers/rnn/simple_rnn.py

451 lines
17 KiB
Python
Raw Normal View History

2023-05-12 03:53:38 +00:00
from keras_core import activations
from keras_core import backend
from keras_core import constraints
from keras_core import initializers
from keras_core import operations as ops
from keras_core import regularizers
from keras_core.api_export import keras_core_export
from keras_core.layers.input_spec import InputSpec
from keras_core.layers.layer import Layer
from keras_core.layers.rnn.dropout_rnn_cell import DropoutRNNCell
from keras_core.layers.rnn.rnn import RNN
@keras_core_export("keras_core.layers.SimpleRNNCell")
class SimpleRNNCell(Layer, DropoutRNNCell):
"""Cell class for SimpleRNN.
This class processes one step within the whole time sequence input, whereas
`keras_core.layer.SimpleRNN` processes the whole sequence.
Args:
units: Positive integer, dimensionality of the output space.
activation: Activation function to use.
Default: hyperbolic tangent (`tanh`).
If you pass `None`, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, (default `True`), whether the layer
should use a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix,
used for the linear transformation of the inputs. Default:
`"glorot_uniform"`.
recurrent_initializer: Initializer for the `recurrent_kernel`
weights matrix, used for the linear transformation
of the recurrent state. Default: `"orthogonal"`.
bias_initializer: Initializer for the bias vector. Default: `"zeros"`.
kernel_regularizer: Regularizer function applied to the `kernel` weights
matrix. Default: `None`.
recurrent_regularizer: Regularizer function applied to the
`recurrent_kernel` weights matrix. Default: `None`.
bias_regularizer: Regularizer function applied to the bias vector.
Default: `None`.
kernel_constraint: Constraint function applied to the `kernel` weights
matrix. Default: `None`.
recurrent_constraint: Constraint function applied to the
`recurrent_kernel` weights matrix. Default: `None`.
bias_constraint: Constraint function applied to the bias vector.
Default: `None`.
dropout: Float between 0 and 1. Fraction of the units to drop for the
linear transformation of the inputs. Default: 0.
recurrent_dropout: Float between 0 and 1. Fraction of the units to drop
for the linear transformation of the recurrent state. Default: 0.
2023-05-17 23:06:01 +00:00
seed: Random seed for dropout.
2023-05-12 03:53:38 +00:00
Call arguments:
sequence: A 2D tensor, with shape `(batch, features)`.
2023-05-12 03:53:38 +00:00
states: A 2D tensor with shape `(batch, units)`, which is the state
from the previous time step.
training: Python boolean indicating whether the layer should behave in
training mode or in inference mode. Only relevant when `dropout` or
`recurrent_dropout` is used.
Example:
```python
inputs = np.random.random([32, 10, 8]).astype(np.float32)
rnn = keras_core.layers.RNN(keras_core.layers.SimpleRNNCell(4))
output = rnn(inputs) # The output has shape `(32, 4)`.
rnn = keras_core.layers.RNN(
keras_core.layers.SimpleRNNCell(4),
return_sequences=True,
return_state=True
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
whole_sequence_output, final_state = rnn(inputs)
```
"""
def __init__(
self,
units,
activation="tanh",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
seed=None,
**kwargs,
):
if units <= 0:
raise ValueError(
"Received an invalid value for argument `units`, "
f"expected a positive integer, got {units}."
)
super().__init__(**kwargs)
self.seed = seed
self.seed_generator = backend.random.SeedGenerator(seed)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.recurrent_constraint = constraints.get(recurrent_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.dropout = min(1.0, max(0.0, dropout))
self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout))
self.state_size = self.units
self.output_size = self.units
def build(self, input_shape):
self.kernel = self.add_weight(
shape=(input_shape[-1], self.units),
name="kernel",
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
)
self.recurrent_kernel = self.add_weight(
shape=(self.units, self.units),
name="recurrent_kernel",
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint,
)
if self.use_bias:
self.bias = self.add_weight(
shape=(self.units,),
name="bias",
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
)
else:
self.bias = None
self.built = True
def call(self, sequence, states, training=False):
2023-05-12 03:53:38 +00:00
prev_output = states[0] if isinstance(states, (list, tuple)) else states
dp_mask = self.get_dropout_mask(sequence)
2023-05-12 03:53:38 +00:00
rec_dp_mask = self.get_recurrent_dropout_mask(prev_output)
if training and dp_mask is not None:
sequence *= dp_mask
h = ops.matmul(sequence, self.kernel)
2023-05-12 03:53:38 +00:00
if self.bias is not None:
h += self.bias
if training and rec_dp_mask is not None:
prev_output *= rec_dp_mask
output = h + ops.matmul(prev_output, self.recurrent_kernel)
if self.activation is not None:
output = self.activation(output)
new_state = [output] if isinstance(states, (list, tuple)) else output
return output, new_state
def get_initial_state(self, batch_size=None):
return [
ops.zeros((batch_size, self.state_size), dtype=self.compute_dtype)
]
def get_config(self):
config = {
"units": self.units,
"activation": activations.serialize(self.activation),
"use_bias": self.use_bias,
"kernel_initializer": initializers.serialize(
self.kernel_initializer
),
"recurrent_initializer": initializers.serialize(
self.recurrent_initializer
),
"bias_initializer": initializers.serialize(self.bias_initializer),
"kernel_regularizer": regularizers.serialize(
self.kernel_regularizer
),
"recurrent_regularizer": regularizers.serialize(
self.recurrent_regularizer
),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"recurrent_constraint": constraints.serialize(
self.recurrent_constraint
),
"bias_constraint": constraints.serialize(self.bias_constraint),
"dropout": self.dropout,
"recurrent_dropout": self.recurrent_dropout,
"seed": self.seed,
}
base_config = super().get_config()
return {**base_config, **config}
@keras_core_export("keras_core.layers.SimpleRNN")
class SimpleRNN(RNN):
"""Fully-connected RNN where the output is to be fed back as the new input.
Args:
units: Positive integer, dimensionality of the output space.
activation: Activation function to use.
Default: hyperbolic tangent (`tanh`).
If you pass None, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, (default `True`), whether the layer uses
a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix,
used for the linear transformation of the inputs. Default:
`"glorot_uniform"`.
recurrent_initializer: Initializer for the `recurrent_kernel`
weights matrix, used for the linear transformation of the recurrent
state. Default: `"orthogonal"`.
bias_initializer: Initializer for the bias vector. Default: `"zeros"`.
kernel_regularizer: Regularizer function applied to the `kernel` weights
matrix. Default: `None`.
recurrent_regularizer: Regularizer function applied to the
`recurrent_kernel` weights matrix. Default: `None`.
bias_regularizer: Regularizer function applied to the bias vector.
Default: `None`.
activity_regularizer: Regularizer function applied to the output of the
layer (its "activation"). Default: `None`.
kernel_constraint: Constraint function applied to the `kernel` weights
matrix. Default: `None`.
recurrent_constraint: Constraint function applied to the
`recurrent_kernel` weights matrix. Default: `None`.
bias_constraint: Constraint function applied to the bias vector.
Default: `None`.
dropout: Float between 0 and 1.
Fraction of the units to drop for the linear transformation
of the inputs. Default: 0.
recurrent_dropout: Float between 0 and 1.
Fraction of the units to drop for the linear transformation of the
recurrent state. Default: 0.
return_sequences: Boolean. Whether to return the last output
in the output sequence, or the full sequence. Default: `False`.
return_state: Boolean. Whether to return the last state
in addition to the output. Default: `False`.
go_backwards: Boolean (default: `False`).
If `True`, process the input sequence backwards and return the
reversed sequence.
stateful: Boolean (default: `False`). If `True`, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.
unroll: Boolean (default: `False`).
If `True`, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up a RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.
Call arguments:
sequence: A 3D tensor, with shape `[batch, timesteps, feature]`.
2023-05-12 03:53:38 +00:00
mask: Binary tensor of shape `[batch, timesteps]` indicating whether
a given timestep should be masked. An individual `True` entry
indicates that the corresponding timestep should be utilized,
while a `False` entry indicates that the corresponding timestep
should be ignored.
training: Python boolean indicating whether the layer should behave in
training mode or in inference mode.
This argument is passed to the cell when calling it.
This is only relevant if `dropout` or `recurrent_dropout` is used.
initial_state: List of initial state tensors to be passed to the first
call of the cell.
Example:
```python
inputs = np.random.random((32, 10, 8))
simple_rnn = keras_core.layers.SimpleRNN(4)
output = simple_rnn(inputs) # The output has shape `(32, 4)`.
simple_rnn = keras_core.layers.SimpleRNN(
4, return_sequences=True, return_state=True
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
whole_sequence_output, final_state = simple_rnn(inputs)
```
"""
def __init__(
self,
units,
activation="tanh",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,
seed=None,
**kwargs,
):
cell = SimpleRNNCell(
units,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
recurrent_initializer=recurrent_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
recurrent_regularizer=recurrent_regularizer,
bias_regularizer=bias_regularizer,
kernel_constraint=kernel_constraint,
recurrent_constraint=recurrent_constraint,
bias_constraint=bias_constraint,
dropout=dropout,
recurrent_dropout=recurrent_dropout,
seed=seed,
dtype=kwargs.get("dtype", None),
2023-05-12 03:53:38 +00:00
trainable=kwargs.get("trainable", True),
name="simple_rnn_cell",
)
super().__init__(
cell,
return_sequences=return_sequences,
return_state=return_state,
go_backwards=go_backwards,
stateful=stateful,
unroll=unroll,
**kwargs,
)
self.input_spec = [InputSpec(ndim=3)]
2023-05-17 23:06:01 +00:00
def call(self, sequences, initial_state=None, mask=None, training=False):
2023-05-12 03:53:38 +00:00
return super().call(
2023-05-17 23:06:01 +00:00
sequences, mask=mask, training=training, initial_state=initial_state
2023-05-12 03:53:38 +00:00
)
@property
def units(self):
return self.cell.units
@property
def activation(self):
return self.cell.activation
@property
def use_bias(self):
return self.cell.use_bias
@property
def kernel_initializer(self):
return self.cell.kernel_initializer
@property
def recurrent_initializer(self):
return self.cell.recurrent_initializer
@property
def bias_initializer(self):
return self.cell.bias_initializer
@property
def kernel_regularizer(self):
return self.cell.kernel_regularizer
@property
def recurrent_regularizer(self):
return self.cell.recurrent_regularizer
@property
def bias_regularizer(self):
return self.cell.bias_regularizer
@property
def kernel_constraint(self):
return self.cell.kernel_constraint
@property
def recurrent_constraint(self):
return self.cell.recurrent_constraint
@property
def bias_constraint(self):
return self.cell.bias_constraint
@property
def dropout(self):
return self.cell.dropout
@property
def recurrent_dropout(self):
return self.cell.recurrent_dropout
def get_config(self):
config = {
"units": self.units,
"activation": activations.serialize(self.activation),
"use_bias": self.use_bias,
"kernel_initializer": initializers.serialize(
self.kernel_initializer
),
"recurrent_initializer": initializers.serialize(
self.recurrent_initializer
),
"bias_initializer": initializers.serialize(self.bias_initializer),
"kernel_regularizer": regularizers.serialize(
self.kernel_regularizer
),
"recurrent_regularizer": regularizers.serialize(
self.recurrent_regularizer
),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"activity_regularizer": regularizers.serialize(
self.activity_regularizer
),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"recurrent_constraint": constraints.serialize(
self.recurrent_constraint
),
"bias_constraint": constraints.serialize(self.bias_constraint),
"dropout": self.dropout,
"recurrent_dropout": self.recurrent_dropout,
}
base_config = super().get_config()
del base_config["cell"]
return {**base_config, **config}
@classmethod
def from_config(cls, config):
return cls(**config)