keras/examples/conv_lstm.py

144 lines
5.1 KiB
Python
Raw Normal View History

2016-11-02 11:08:31 +00:00
""" This script demonstrate the use of convolutional LSTM network
This network is used to predict the next frame of an artificialy
generated movie which contain moving squares.
"""
from keras.models import Sequential
from keras.layers.convolutional import Convolution3D
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.normalization import BatchNormalization
import numpy as np
import pylab as plt
# We create a layer which take as input movies of shape
# (n_frames, width, height, channel) and that returns a movie
# of identical shape.
seq = Sequential()
seq.add(ConvLSTM2D(nb_filter=40, nb_row=3, nb_col=3,
input_shape=(None, 40, 40, 1),
border_mode='same', return_sequences=True))
seq.add(BatchNormalization())
seq.add(ConvLSTM2D(nb_filter=40, nb_row=3, nb_col=3,
border_mode='same', return_sequences=True))
seq.add(BatchNormalization())
seq.add(ConvLSTM2D(nb_filter=40, nb_row=3, nb_col=3,
border_mode='same', return_sequences=True))
seq.add(BatchNormalization())
seq.add(ConvLSTM2D(nb_filter=40, nb_row=3, nb_col=3,
border_mode='same', return_sequences=True))
seq.add(BatchNormalization())
seq.add(Convolution3D(nb_filter=1, kernel_dim1=1, kernel_dim2=3,
kernel_dim3=3, activation='sigmoid',
border_mode='same', dim_ordering='tf'))
seq.compile(loss='binary_crossentropy', optimizer='adadelta')
# Generating artificial data:
# Generate movies with 3 to 7 moving squares inside.
# The squares are of shape one by one or two by two pixels and
# they move linearly trought time.
# For convenience we first create movies with bigger width and height, (80x80)
# and at the end we select a 40x40 window
def generate_movies(n_samples=1200, n_frames=15):
row = 80
col = 80
noisy_movies = np.zeros((n_samples, n_frames, row, col, 1), dtype=np.float)
shifted_movies = np.zeros((n_samples, n_frames, row, col, 1),
dtype=np.float)
for i in range(n_samples):
# add from 3 to 7 moving squares
n = np.random.randint(3, 8)
for j in range(n):
# Initial position
xstart = np.random.randint(20, 60)
ystart = np.random.randint(20, 60)
# Direction of motion
directionx = np.random.randint(0, 3) - 1
directiony = np.random.randint(0, 3) - 1
# Size of the square
w = np.random.randint(2, 4)
for t in range(n_frames):
x_shift = xstart + directionx * t
y_shift = ystart + directiony * t
noisy_movies[i, t, x_shift - w: x_shift + w,
y_shift - w: y_shift + w, 0] += 1
# Make it more robust by adding noise.
# The idea is that if during predict time,
# the value of the pixel is not exactly one,
# we need to train the network to be robust and stille
# consider it is a pixel belonging to a square.
if np.random.randint(0, 2):
noise_f = (-1)**np.random.randint(0, 2)
noisy_movies[i, t,
x_shift - w - 1: x_shift + w + 1,
y_shift - w - 1: y_shift + w + 1,
0] += noise_f * 0.1
# Shitf the ground truth by 1
x_shift = xstart + directionx * (t + 1)
y_shift = ystart + directiony * (t + 1)
shifted_movies[i, t, x_shift - w: x_shift + w,
y_shift - w: y_shift + w, 0] += 1
# Cut to a forty's sized window
noisy_movies = noisy_movies[::, ::, 20:60, 20:60, ::]
shifted_movies = shifted_movies[::, ::, 20:60, 20:60, ::]
noisy_movies[noisy_movies >= 1] = 1
shifted_movies[shifted_movies >= 1] = 1
return noisy_movies, shifted_movies
# Train the network
noisy_movies, shifted_movies = generate_movies(n_samples=1200)
seq.fit(noisy_movies[:1000], shifted_movies[:1000], batch_size=10,
nb_epoch=300, validation_split=0.05)
# Testing the network on one movie
# feed it with the first 7 positions and then
# predict the new positions
which = 1004
track = noisy_movies[which][:7, ::, ::, ::]
for j in range(16):
new_pos = seq.predict(track[np.newaxis, ::, ::, ::, ::])
new = new_pos[::, -1, ::, ::, ::]
track = np.concatenate((track, new), axis=0)
# And then compare the predictions
# to the ground truth
track2 = noisy_movies[which][::, ::, ::, ::]
for i in range(15):
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(121)
if i >= 7:
ax.text(1, 3, 'Predictions !', fontsize=20, color='w')
else:
ax.text(1, 3, 'Inital trajectory', fontsize=20)
toplot = track[i, ::, ::, 0]
plt.imshow(toplot)
ax = fig.add_subplot(122)
plt.text(1, 3, 'Ground truth', fontsize=20)
toplot = track2[i, ::, ::, 0]
if i >= 2:
toplot = shifted_movies[which][i - 1, ::, ::, 0]
plt.imshow(toplot)
plt.savefig('%i_animate.png' % (i + 1))