fastText: adding n-gram embeddings for higher test_set accuracy (#3733)

* adding bi-gram embeddings for better test accuracy

* - add arbitrary n-gram range
- fix typos

* - fixing white spaces

* - add comment
This commit is contained in:
Ardalan 2016-09-10 19:35:15 +02:00 committed by François Chollet
parent d9c4d8a76a
commit a375cb322f

@ -5,8 +5,9 @@ Based on Joulin et al's paper:
Bags of Tricks for Efficient Text Classification
https://arxiv.org/abs/1607.01759
Can achieve accuracy around 88% after 5 epochs in 70s.
Results on IMDB datasets with uni and bi-gram embeddings:
Uni-gram: 0.8813 test accuracy after 5 epochs. 15s/epoch on i7 cpu.
Bi-gram : 0.9056 test accuracy after 5 epochs. 5s/epoch on GTX 1080 gpu.
'''
from __future__ import print_function
@ -21,17 +22,87 @@ from keras.layers import AveragePooling1D
from keras.datasets import imdb
# set parameters:
def create_ngram_set(input_list, ngram_value=2):
"""
Extract a set of n-grams from a list of integers.
>>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=2)
{(4, 9), (4, 1), (1, 4), (9, 4)}
>>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=3)
[(1, 4, 9), (4, 9, 4), (9, 4, 1), (4, 1, 4)]
"""
return set(zip(*[input_list[i:] for i in range(ngram_value)]))
def add_ngram(sequences, token_indice, ngram_range=2):
"""
Augment the input list of list (sequences) by appending n-grams values.
Example: adding bi-gram
>>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]]
>>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017}
>>> add_ngram(sequences, token_indice, ngram_range=2)
[[1, 3, 4, 5, 1337, 2017], [1, 3, 7, 9, 2, 1337, 42]]
Example: adding tri-gram
>>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]]
>>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017, (7, 9, 2): 2018}
>>> add_ngram(sequences, token_indice, ngram_range=3)
[[1, 3, 4, 5, 1337], [1, 3, 7, 9, 2, 1337, 2018]]
"""
new_sequences = []
for input_list in sequences:
new_list = input_list[:]
for i in range(len(new_list)-ngram_range+1):
for ngram_value in range(2, ngram_range+1):
ngram = tuple(new_list[i:i+ngram_value])
if ngram in token_indice:
new_list.append(token_indice[ngram])
new_sequences.append(new_list)
return new_sequences
# Set parameters:
# ngram_range = 2 will add bi-grams features
ngram_range = 1
max_features = 20000
maxlen = 400
batch_size = 32
embedding_dims = 20
embedding_dims = 50
nb_epoch = 5
print('Loading data...')
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
print('Average train sequence length: {}'.format(np.mean(list(map(len, X_train)), dtype=int)))
print('Average test sequence length: {}'.format(np.mean(list(map(len, X_test)), dtype=int)))
if ngram_range > 1:
print('Adding {}-gram features'.format(ngram_range))
# Create set of unique n-gram from the training set.
ngram_set = set()
for input_list in X_train:
for i in range(2, ngram_range+1):
set_of_ngram = create_ngram_set(input_list, ngram_value=i)
ngram_set.update(set_of_ngram)
# Dictionary mapping n-gram token to a unique integer.
# Integer values are greater than max_features in order
# to avoid collision with existing features.
start_index = max_features + 1
token_indice = {v: k+start_index for k, v in enumerate(ngram_set)}
indice_token = {token_indice[k]: k for k in token_indice}
# max_features is the highest integer that could be found in the dataset.
max_features = np.max(list(indice_token.keys())) + 1
# Augmenting X_train and X_test with n-grams features
X_train = add_ngram(X_train, token_indice, ngram_range)
X_test = add_ngram(X_test, token_indice, ngram_range)
print('Average train sequence length: {}'.format(np.mean(list(map(len, X_train)), dtype=int)))
print('Average test sequence length: {}'.format(np.mean(list(map(len, X_test)), dtype=int)))
print('Pad sequences (samples x time)')
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)