keras/keras_core/applications/vgg16.py
2023-05-22 12:59:33 -07:00

250 lines
9.0 KiB
Python

from tensorflow.io import gfile
from keras_core import backend
from keras_core import layers
from keras_core.api_export import keras_core_export
from keras_core.applications import imagenet_utils
from keras_core.models import Functional
from keras_core.operations import operation_utils
from keras_core.utils import file_utils
WEIGHTS_PATH = (
"https://storage.googleapis.com/tensorflow/keras-applications/"
"vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5"
)
WEIGHTS_PATH_NO_TOP = (
"https://storage.googleapis.com/tensorflow/"
"keras-applications/vgg16/"
"vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"
)
@keras_core_export(
["keras_core.applications.vgg16.VGG16", "keras_core.applications.VGG16"]
)
def VGG16(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
):
"""Instantiates the VGG16 model.
Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
For image classification use cases, see
[this page for detailed examples](
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
For transfer learning use cases, make sure to read the
[guide to transfer learning & fine-tuning](
https://keras.io/guides/transfer_learning/).
The default input size for this model is 224x224.
Note: each Keras Application expects a specific kind of input preprocessing.
For VGG16, call `keras_core.applications.vgg16.preprocess_input` on your
inputs before passing them to the model.
`vgg16.preprocess_input` will convert the input images from RGB to BGR,
then will zero-center each color channel with respect to the ImageNet
dataset, without scaling.
Args:
include_top: whether to include the 3 fully-connected
layers at the top of the network.
weights: one of `None` (random initialization),
`"imagenet"` (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is `False` (otherwise the input shape
has to be `(224, 224, 3)`
(with `channels_last` data format) or
`(3, 224, 224)` (with `"channels_first"` data format).
It should have exactly 3 input channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is `True`, and
if no `weights` argument is specified.
classifier_activation: A `str` or callable. The activation function to
use on the "top" layer. Ignored unless `include_top=True`. Set
`classifier_activation=None` to return the logits of the "top"
layer. When loading pretrained weights, `classifier_activation` can
only be `None` or `"softmax"`.
Returns:
A model instance.
"""
if not (weights in {"imagenet", None} or gfile.exists(weights)):
raise ValueError(
"The `weights` argument should be either "
"`None` (random initialization), `imagenet` "
"(pre-training on ImageNet), "
"or the path to the weights file to be loaded. Received: "
f"weights={weights}"
)
if weights == "imagenet" and include_top and classes != 1000:
raise ValueError(
'If using `weights` as `"imagenet"` with `include_top` '
"as true, `classes` should be 1000. "
f"Received `classes={classes}`"
)
# Determine proper input shape
input_shape = imagenet_utils.obtain_input_shape(
input_shape,
default_size=224,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights,
)
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Block 1
x = layers.Conv2D(
64, (3, 3), activation="relu", padding="same", name="block1_conv1"
)(img_input)
x = layers.Conv2D(
64, (3, 3), activation="relu", padding="same", name="block1_conv2"
)(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x)
# Block 2
x = layers.Conv2D(
128, (3, 3), activation="relu", padding="same", name="block2_conv1"
)(x)
x = layers.Conv2D(
128, (3, 3), activation="relu", padding="same", name="block2_conv2"
)(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x)
# Block 3
x = layers.Conv2D(
256, (3, 3), activation="relu", padding="same", name="block3_conv1"
)(x)
x = layers.Conv2D(
256, (3, 3), activation="relu", padding="same", name="block3_conv2"
)(x)
x = layers.Conv2D(
256, (3, 3), activation="relu", padding="same", name="block3_conv3"
)(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x)
# Block 4
x = layers.Conv2D(
512, (3, 3), activation="relu", padding="same", name="block4_conv1"
)(x)
x = layers.Conv2D(
512, (3, 3), activation="relu", padding="same", name="block4_conv2"
)(x)
x = layers.Conv2D(
512, (3, 3), activation="relu", padding="same", name="block4_conv3"
)(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x)
# Block 5
x = layers.Conv2D(
512, (3, 3), activation="relu", padding="same", name="block5_conv1"
)(x)
x = layers.Conv2D(
512, (3, 3), activation="relu", padding="same", name="block5_conv2"
)(x)
x = layers.Conv2D(
512, (3, 3), activation="relu", padding="same", name="block5_conv3"
)(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x)
if include_top:
# Classification block
x = layers.Flatten(name="flatten")(x)
x = layers.Dense(4096, activation="relu", name="fc1")(x)
x = layers.Dense(4096, activation="relu", name="fc2")(x)
imagenet_utils.validate_activation(classifier_activation, weights)
x = layers.Dense(
classes, activation=classifier_activation, name="predictions"
)(x)
else:
if pooling == "avg":
x = layers.GlobalAveragePooling2D()(x)
elif pooling == "max":
x = layers.GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = operation_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Functional(inputs, x, name="vgg16")
# Load weights.
if weights == "imagenet":
if include_top:
weights_path = file_utils.get_file(
"vgg16_weights_tf_dim_ordering_tf_kernels.h5",
WEIGHTS_PATH,
cache_subdir="models",
file_hash="64373286793e3c8b2b4e3219cbf3544b",
)
else:
weights_path = file_utils.get_file(
"vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5",
WEIGHTS_PATH_NO_TOP,
cache_subdir="models",
file_hash="6d6bbae143d832006294945121d1f1fc",
)
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
@keras_core_export("keras_core.applications.vgg16.preprocess_input")
def preprocess_input(x, data_format=None):
return imagenet_utils.preprocess_input(
x, data_format=data_format, mode="caffe"
)
@keras_core_export("keras_core.applications.vgg16.decode_predictions")
def decode_predictions(preds, top=5):
return imagenet_utils.decode_predictions(preds, top=top)
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
mode="",
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE,
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC,
)
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__