keras/keras_core/layers/layer.py
2023-04-28 14:22:29 -07:00

942 lines
34 KiB
Python

"""Layer is an Operation with state.
Takes care of:
- Weights / variables (and tracking thereof)
- deferred build
- trainable argument value inference
- masking
- autocasting
And some more magic:
- add_loss
- metric tracking
- RNG seed tracking
- activity regularization
"""
import collections
import inspect
import threading
import warnings
import numpy as np
from tensorflow import nest
from keras_core import backend
from keras_core import initializers
from keras_core import mixed_precision
from keras_core import regularizers
from keras_core import utils
from keras_core.api_export import keras_core_export
from keras_core.backend import KerasTensor
from keras_core.layers import input_spec
from keras_core.metrics.metric import Metric
from keras_core.operations.operation import Operation
from keras_core.utils import summary_utils
from keras_core.utils.tracking import Tracker
@keras_core_export(["keras_core.Layer", "keras_core.layers.Layer"])
class Layer(Operation):
def __init__(
self,
*,
activity_regularizer=None,
trainable=True,
dtype=None,
autocast=True,
name=None,
):
super().__init__(name=name)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.built = False
self.dtype_policy = mixed_precision.resolve_policy(dtype)
self.autocast = autocast
self.input_spec = None
self._trainable = trainable
self._layers = []
self._metrics = []
self._seed_generators = []
self._losses = []
self._variables = []
self._supports_masking = not utils.is_default(self.compute_mask)
self._build_shapes_dict = None
self._call_signature_parameters = [
p.name for p in inspect.signature(self.call).parameters.values()
]
self._tracker = Tracker(
{
"variables": (
lambda x: isinstance(x, backend.Variable),
self._variables,
),
"metrics": (lambda x: isinstance(x, Metric), self._metrics),
"layers": (
lambda x: isinstance(x, Layer)
and not isinstance(x, Metric),
self._layers,
),
"seed_generators": (
lambda x: isinstance(x, backend.random.SeedGenerator),
self._seed_generators,
),
}
)
@utils.default
def build(self, input_shape):
self.built = True
def get_build_config(self):
"""Returns a dictionary with the layer's input shape.
This method returns a config dict that can be used by
`build_from_config(config)` to create all states (e.g. Variables and
Lookup tables) needed by the layer.
By default, the config only contains the input shape that the layer
was built with. If you're writing a custom layer that creates state in
an unusual way, you should override this method to make sure this state
is already created when Keras attempts to load its value upon model
loading.
Returns:
A dict containing the input shape associated with the layer.
"""
if self._build_shapes_dict is not None:
if len(self._build_shapes_dict) == 1:
return {
"input_shape": tuple(self._build_shapes_dict.values())[0],
}
else:
return {"shapes_dict": self._build_shapes_dict}
def build_from_config(self, config):
"""Builds the layer's states with the supplied config dict.
By default, this method calls the `build(config["input_shape"])` method,
which creates weights based on the layer's input shape in the supplied
config. If your config contains other information needed to load the
layer's state, you should override this method.
Args:
config: Dict containing the input shape associated with this layer.
"""
if config:
if "input_shape" in config:
self.build(config["input_shape"])
self._build_shapes_dict = config
elif "shapes_dict" in config:
self.build(**config["shapes_dict"])
self._build_shapes_dict = config["shapes_dict"]
self.built = True
def add_variable(
self,
shape,
initializer,
dtype=None,
trainable=True,
regularizer=None,
constraint=None,
name=None,
):
# TODO: handle layout
self._check_super_called()
initializer = initializers.get(initializer)
variable = backend.Variable(
initializer=initializer,
shape=shape,
dtype=dtype or self.variable_dtype,
trainable=trainable,
name=name,
)
# Will be added to layer.losses
variable.regularizer = regularizer
variable.constraint = constraint
self._variables.append(variable)
# Prevent double-tracking
self._tracker.stored_ids["variables"].add(id(variable))
return variable
def add_weight(self, *args, **kwargs):
return self.add_variable(*args, **kwargs)
@property
def trainable(self):
return self._trainable
@trainable.setter
def trainable(self, value):
"""Sets trainable attribute for the layer and its sublayers.
When this value is changed during training (e.g. with a
`Callback`) you need to call the parent
`Model.make_train_function` with `force=True` in order to
recompile the training graph.
Args:
value: Boolean with the desired state for the layer's trainable
attribute.
"""
for layer in self._layers():
layer._trainable = value
@property
def variables(self):
# Includes weights, seed generator state, and metric variables.
variables = self.weights[:]
for m in self._metrics:
variables.extend(m.variables)
for sg in self._seed_generators:
variables.append(sg.state)
return variables
@property
def trainable_variables(self):
return [v for v in self.variables if v.trainable]
@property
def non_trainable_variables(self):
return [v for v in self.variables if not v.trainable]
@property
def weights(self):
# Return only "own weights" of all Layers, recursively.
# Also deduplicate them.
weights = []
seen_ids = set()
for w in self._variables:
if id(w) not in seen_ids:
weights.append(w)
seen_ids.add(id(w))
for layer in self._layers:
for w in layer.weights:
if id(w) not in seen_ids:
weights.append(w)
seen_ids.add(id(w))
return weights
@property
def trainable_weights(self):
return [v for v in self.weights if v.trainable]
@property
def non_trainable_weights(self):
return [v for v in self.weights if not v.trainable]
def get_weights(self):
return [v.numpy() for v in self.weights]
def set_weights(self, weights):
layer_weights = self.weights
if len(layer_weights) != len(weights):
raise ValueError(
f"You called `set_weights(weights)` on layer '{self.name}' "
f"with a weight list of length {len(weights)}, but the layer "
f"was expecting {len(layer_weights)} weights."
)
for variable, value in zip(layer_weights, weights):
if variable.shape != value.shape:
raise ValueError(
f"Layer {self.name} weight shape {variable.shape} "
"is not compatible with provided weight "
f"shape {value.shape}."
)
variable.assign(value)
@property
def dtype(self):
"""The dtype of the state (weights) of the layer."""
return self.variable_dtype
@property
def compute_dtype(self):
"""The dtype of the computations performed by the layer."""
return self.dtype_policy.compute_dtype
@property
def variable_dtype(self):
"""The dtype of the state (weights) of the layer."""
return self.dtype_policy.variable_dtype
@property
def supports_masking(self):
"""Whether this layer supports computing a mask using `compute_mask`."""
return self._supports_masking
@supports_masking.setter
def supports_masking(self, value):
self._supports_masking = value
@utils.default
def compute_mask(self, inputs, previous_mask):
return previous_mask
def __call__(self, *args, **kwargs):
self._check_super_called()
######################################
# Argument validation and conversion. #
# 1. Convert any array arguments to tensors of correct dtype.
def maybe_convert(x):
if isinstance(x, np.ndarray):
return backend.convert_to_tensor(x, dtype=self.compute_dtype)
if backend.is_tensor(x):
if (
self.autocast
and backend.is_float_dtype(x.dtype)
and x.dtype != self.compute_dtype
):
return backend.cast(x, dtype=self.compute_dtype)
elif isinstance(x, backend.KerasTensor):
if (
self.autocast
and backend.is_float_dtype(x.dtype)
and x.dtype != self.compute_dtype
):
x.dtype = self.compute_dtype
return x
args = nest.map_structure(maybe_convert, args)
kwargs = nest.map_structure(maybe_convert, kwargs)
# 3. Enforce that only tensors can be passed positionally.
for arg in nest.flatten(args):
if not isinstance(arg, KerasTensor) and not backend.is_tensor(arg):
raise ValueError(
"Only input tensors may be passed as "
"positional arguments. The following argument value "
f"should be passed as a keyword argument: {arg} "
f"(of type {type(arg)})"
)
call_spec = CallSpec(self.call, args, kwargs)
# 4. Check input spec for 1st positional arg.
# TODO: consider extending this to all args and kwargs.
self._assert_input_compatibility(call_spec.first_arg)
######################################
###############
# 5. Call build. #
self._maybe_build(call_spec)
###############
# Maintains info about the `Layer.call` stack.
call_context = self._get_call_context()
# 6. Infer training value
# Training phase for `Layer.call` is set via (in order of priority):
# (1) The `training` argument passed to this `Layer.call`, if not None
# (2) The training argument of an outer `Layer.call`.
# (4) Any non-None default value for `training` in the call signature
# (5) False (treating the layer as if it's in inference)
training = call_spec.arguments_dict.get("training", None)
if training is None:
training = call_context.training
if training is None:
training = self._get_default_training_value()
if training is None:
training = False
call_context.training = training
if self._call_has_training_arg():
kwargs["training"] = training
# 7. Populate mask argument(s)
if self.supports_masking:
if len(call_spec.tensor_arguments_dict) == 1:
if (
"mask" in call_spec.argument_names
and call_spec.arguments_dict["mask"] is None
):
arg_name = list(call_spec.tensor_arguments_dict.keys())[0]
only_tensor_arg = call_spec.tensor_arguments_dict[arg_name]
mask = nest.map_structure(
lambda x: getattr(x, "_keras_mask", None),
only_tensor_arg,
)
kwargs["mask"] = mask
elif len(call_spec.tensor_arguments_dict) > 1:
for k, v in call_spec.tensor_arguments_dict.items():
expected_mask_arg_name = f"{k}_mask"
if expected_mask_arg_name in call_spec.argument_names:
if (
call_spec.arguments_dict[expected_mask_arg_name]
is None
):
mask = nest.map_structure(
lambda x: getattr(x, "_keras_mask", None), v
)
kwargs[expected_mask_arg_name] = mask
# 8. Call the layer.
try:
with backend.name_scope(self.name):
if self.autocast and self.compute_dtype != self.variable_dtype:
# For mixed precision, we automatically cast layer variables
# (float ones only) to the compute dtype upon access.
with backend.AutocastScope(self.compute_dtype):
outputs = super().__call__(*args, **kwargs)
else:
outputs = super().__call__(*args, **kwargs)
# Record activity regularizer loss.
if self.activity_regularizer is not None:
for output in nest.flatten(outputs):
if backend.is_tensor(output):
self.add_loss(self.activity_regularizer(output))
if self.supports_masking:
# Set masks on outputs,
# provided only the first positional input arg and its mask.
# TODO: consider extending this to all args and kwargs.
previous_mask = getattr(
call_spec.first_arg, "_keras_mask", None
)
self._set_mask_metadata(
call_spec.first_arg, outputs, previous_mask
)
finally:
# Destroy call context if we created it
self._maybe_reset_call_context()
return outputs
def call(self, *args, **kwargs):
raise NotImplementedError
def stateless_call(
self, trainable_variables, non_trainable_variables, *args, **kwargs
):
# TODO: also handle losses
self._check_super_called()
if not self.built:
raise ValueError(
"To call stateless_call, {self.__class__.__name__} must be "
"built (i.e. its variables must have been already created). "
"You can build it by calling it on some data."
)
if len(trainable_variables) != len(self.trainable_variables):
raise ValueError(
"Argument `trainable_variables` must be a list of tensors "
"corresponding 1:1 to "
f"{self.__class__.__name__}().trainable_variables. "
f"Received list with length {len(trainable_variables)}, "
f"but expected {len(self.trainable_variables)} variables."
)
if len(non_trainable_variables) != len(self.non_trainable_variables):
raise ValueError(
"Argument `non_trainable_variables` must be a list of tensors "
"corresponding 1:1 to "
f"{self.__class__.__name__}().non_trainable_variables. "
f"Received list with length {len(non_trainable_variables)}, "
f"but expected {len(self.non_trainable_variables)} variables."
)
# Gather variable mapping
trainable_mapping = zip(self.trainable_variables, trainable_variables)
non_trainable_mapping = zip(
self.non_trainable_variables, non_trainable_variables
)
mapping = list(trainable_mapping) + list(non_trainable_mapping)
# Call in stateless scope
with backend.StatelessScope(state_mapping=mapping) as scope:
outputs = self.call(*args, **kwargs)
# Gather updated non-trainable variables
non_trainable_variables = []
for v in self.non_trainable_variables:
new_v = scope.get_current_value(v)
if new_v is not None:
non_trainable_variables.append(new_v)
else:
non_trainable_variables.append(v)
return outputs, non_trainable_variables
def compute_output_spec(self, *args, **kwargs):
if utils.is_default(self.compute_output_shape):
return super().compute_output_spec(*args, **kwargs)
else:
# Use compute_output_shape() to return the right output spec
call_spec = CallSpec(self.call, args, kwargs)
shapes_dict = get_shapes_dict(call_spec)
if len(shapes_dict) == 1:
# Single arg: pass it positionally
input_shape = tuple(shapes_dict.values())[0]
output_shape = self.compute_output_shape(input_shape)
else:
# More than one shape: pass them by name.
output_shape = self.compute_output_shape(**shapes_dict)
if (
isinstance(output_shape, tuple)
and output_shape
and isinstance(output_shape[0], (int, type(None)))
):
return KerasTensor(output_shape, dtype=self.compute_dtype)
return nest.map_structure(
lambda s: KerasTensor(s, dtype=self.compute_dtype), output_shape
)
@utils.default
def compute_output_shape(self, *args, **kwargs):
return NotImplementedError
def add_loss(self, loss):
# Eager only.
losses = nest.flatten(loss)
for x in losses:
if not backend.is_tensor(x):
raise ValueError(
"`add_loss()` can only be called from inside `build()` or "
f"`call()`, on a tensor input. Received invalid value: {x}"
)
if backend.in_stateless_scope():
scope = backend.get_stateless_scope()
if scope.collect_losses:
for x in losses:
scope.add_loss(loss)
else:
self._losses.extend(losses)
@property
def losses(self):
losses = self._losses[:]
for layer in self._layers:
losses.extend(layer._losses)
weight_regularization_losses = []
for v in self.trainable_weights:
regularizer = getattr(v, "regularizer", None)
if regularizer:
weight_regularization_losses.append(regularizer(v))
losses.extend(weight_regularization_losses)
return losses
def save_own_variables(self, store):
"""Saves the state of the layer.
You can override this method to take full control of how the state of
the layer is saved upon calling `model.save()`.
Args:
store: Dict where the state of the model will be saved.
"""
all_vars = self._variables
for i, v in enumerate(all_vars):
store[f"{i}"] = np.array(v)
def load_own_variables(self, store):
"""Loads the state of the layer.
You can override this method to take full control of how the state of
the layer is loaded upon calling `keras.models.load_model()`.
Args:
store: Dict from which the state of the model will be loaded.
"""
all_vars = self._variables
if len(store.keys()) != len(all_vars):
if len(all_vars) == 0 and not self.built:
raise ValueError(
f"Layer '{self.name}' was never built "
"and thus it doesn't have any variables. "
f"However the weights file lists {len(store.keys())} "
"variables for this layer. In most cases, "
"this indicates that you need to implement the "
"`def build_from_config(self, config)` method "
"on the layer. "
"You might also want to implement the method "
"that generates the config at saving time, "
"`def get_build_config(self)`. "
"The method `build_from_config()` is meant "
"to create the state "
"of the layer (i.e. its variables) upon deserialization.",
)
raise ValueError(
f"Layer '{self.name}' expected {len(all_vars)} variables, "
"but received "
f"{len(store.keys())} variables during loading. "
f"Expected: {[v.name for v in all_vars]}"
)
for i, v in enumerate(all_vars):
v.assign(store[f"{i}"])
def _clear_losses(self):
if backend.in_stateless_scope():
scope = backend.get_stateless_scope()
if scope.collect_losses:
for x in scope.losses:
if x in self._losses:
scope.losses.remove(x)
self._losses = []
def add_metric(self):
# Permanently disabled
raise NotImplementedError
def count_params(self):
"""Count the total number of scalars composing the weights.
Returns:
An integer count.
"""
if not self.built:
raise ValueError(
"You tried to call `count_params` "
f"on layer '{self.name}'"
", but the layer isn't built. "
"You can build it manually via: "
f"`layer.build(input_shape)`."
)
return summary_utils.count_params(self.weights)
def _maybe_build(self, call_spec):
if not self.built:
shapes_dict = get_shapes_dict(call_spec)
self._build_shapes_dict = shapes_dict
failure = False
if len(shapes_dict) == 1:
# Single arg: pass it positionally
input_shape = tuple(shapes_dict.values())[0]
with backend.name_scope(self.name):
if utils.is_default(
self.build
) and might_have_unbuilt_state(self):
status = self._build_by_run_for_single_pos_arg(
input_shape
)
if not status:
failure = True
else:
self.build(input_shape)
else:
# More than one shape: pass them by name,
# and check that build() expects the right args.
check_build_signature(self.build, shapes_dict)
with backend.name_scope(self.name):
if utils.is_default(self.build):
if might_have_unbuilt_state(self):
status = self._build_by_run_for_kwargs(shapes_dict)
if not status:
failure = True
else:
run_build = True
build_args = set(
inspect.signature(self.build).parameters.keys()
)
for key in shapes_dict.keys():
if key not in build_args:
run_build = False
if run_build:
self.build(**shapes_dict)
else:
raise ValueError(
"In a layer with multiple tensor arguments "
"in call(), the build() method should accept "
"corresponding `*_shape` arguments, e.g. "
"if the call signature is `def call(self, x1, x2)` "
"then the build signature should be "
"`def build(self, x1_shape, x2_shape)`. "
"Keras will not build this layer automatically "
"since it does not conform to this."
)
if failure:
raise ValueError(
f"Layer '{self.name}' looks like it has "
"unbuilt state, but Keras is not able to "
"trace the layer `call()` in order to "
"build it automatically. You must implement "
"the `def build(self, input_shape)` method on your "
"layer. It should create all variables used by the "
"layer (e.g. by calling `layer.build()` on all its "
"children layers)."
)
self.built = True
# Check input spec again (after build, since self.input_spec
# may have been updated
self._assert_input_compatibility(call_spec.first_arg)
def _build_by_run_for_single_pos_arg(self, input_shape):
# Case: all inputs are in the first arg (possibly nested).
if is_shape_tuple(input_shape):
input_shape = tuple(input_shape)
if isinstance(input_shape, list):
input_tensors = [
backend.traceable_tensor(shape) for shape in input_shape
]
elif isinstance(input_shape, dict):
input_tensors = {
k: backend.traceable_tensor(shape)
for k, shape in input_shape.items()
}
else:
input_tensors = backend.traceable_tensor(input_shape)
try:
self.call(input_tensors)
return True
except Exception as e:
warnings.warn(
"Error when attempting to automatically build "
f"the layer by tracing it: {e}"
)
return False
def _build_by_run_for_kwargs(self, shapes_dict):
# Case: inputs were recorded as multiple keyword arguments.
if all(is_shape_tuple(s) for s in shapes_dict.values()):
# Case: all input keyword arguments were plain tensors.
input_tensors = {
# We strip the `_shape` suffix to recover kwarg names.
k[:-6]: backend.traceable_tensor(shape)
for k, shape in shapes_dict.items()
}
try:
self.call(**input_tensors)
return True
except Exception as e:
warnings.warn(
"Error when attempting to automatically build "
f"the layer by tracing it: {e}"
)
return False
else:
# Not supported: nested input keyword arguments.
return False
def __repr__(self):
return (
f"<{self.__class__.__name__} "
f"name={self.name}, built={self.built}>"
)
def __str__(self):
return (
f"<{self.__class__.__name__} "
f"name={self.name}, built={self.built}>"
)
def __setattr__(self, name, value):
# Track Variables, Layers, Metrics
if hasattr(self, "_tracker"):
value = self._tracker.track(value)
return super().__setattr__(name, value)
def _check_super_called(self):
if not hasattr(self, "_tracker"):
raise RuntimeError(
f"In layer '{self.__class__.__name__}', you forgot to call "
"`super().__init__()` in the `__init__()` method. "
"Go add it!"
)
def _assert_input_compatibility(self, arg_0):
if self.input_spec:
input_spec.assert_input_compatibility(
self.input_spec, arg_0, layer_name=self.name
)
def _call_has_training_arg(self):
return "training" in self._call_signature_parameters
def _call_has_mask_arg(self):
return "mask" in self._call_signature_parameters
def _get_call_context(self):
"""Returns currently active `CallContext`."""
global CALL_CTX
call_ctx = getattr(CALL_CTX, "current", None)
if call_ctx is None:
# Enter new call context.
call_ctx = CallContext(entry_layer=self)
CALL_CTX.current = call_ctx
self._clear_losses()
return call_ctx
def _maybe_reset_call_context(self):
global CALL_CTX
call_ctx = getattr(CALL_CTX, "current", None)
if call_ctx is None or call_ctx.entry_layer == self:
CALL_CTX.current = None
def _get_default_training_value(self):
signature = inspect.signature(self.call)
kwargs = [
p.name
for p in signature.parameters.values()
if p.default is not inspect.Parameter.empty
]
if not kwargs:
return None
values = self.call.__defaults__
mapping = dict(zip(kwargs, values))
return mapping.get("training", None)
def _flatten_layers(self, include_self=True, recursive=True):
layers = []
if include_self:
layers.append(self)
seen_object_ids = set()
deque = collections.deque(self._layers)
while deque:
layer = deque.popleft()
if id(layer) in seen_object_ids:
continue
seen_object_ids.add(id(layer))
layers.append(layer)
# Introspect recursively through sublayers.
if recursive:
deque.extendleft(layer._layers)
return layers
def _set_mask_metadata(self, inputs, outputs, previous_mask):
flat_outputs = nest.flatten(outputs)
mask_already_computed = all(
getattr(x, "_keras_mask", None) is not None for x in flat_outputs
)
if mask_already_computed:
return
output_masks = self.compute_mask(inputs, previous_mask)
if output_masks is None:
return
flat_masks = nest.flatten(output_masks)
for tensor, mask in zip(flat_outputs, flat_masks):
if getattr(tensor, "_keras_mask", None) is None:
tensor._keras_mask = mask
def is_backend_tensor_or_symbolic(x):
return backend.is_tensor(x) or isinstance(x, backend.KerasTensor)
class CallSpec:
def __init__(self, call_fn, args, kwargs):
sig = inspect.signature(call_fn)
bound_args = sig.bind(*args, **kwargs)
bound_args.apply_defaults()
arg_dict = {}
arg_names = []
tensor_arg_dict = {}
tensor_args = []
tensor_arg_names = []
nested_tensor_arg_names = []
for name, value in bound_args.arguments.items():
arg_dict[name] = value
arg_names.append(name)
if is_backend_tensor_or_symbolic(value):
tensor_args.append(value)
tensor_arg_names.append(name)
tensor_arg_dict[name] = value
elif nest.is_nested(value):
flat_values = nest.flatten(value)
if all(is_backend_tensor_or_symbolic(x) for x in flat_values):
tensor_args.append(value)
tensor_arg_names.append(name)
tensor_arg_dict[name] = value
nested_tensor_arg_names.append(name)
elif any(is_backend_tensor_or_symbolic(x) for x in flat_values):
raise ValueError(
"In a nested call() argument, "
"you cannot mix tensors and non-tensors. "
"Received invalid mixed argument: "
f"{name}={value}"
)
self.arguments_dict = arg_dict
self.argument_names = arg_names
self.tensor_arguments_dict = tensor_arg_dict
self.tensor_arguments_names = tensor_arg_names
self.nested_tensor_argument_names = nested_tensor_arg_names
self.first_arg = arg_dict[arg_names[0]]
def get_arguments_dict(fn, args, kwargs):
"""Return a dict mapping argument names to their values."""
sig = inspect.signature(fn)
bound_args = sig.bind(*args, **kwargs)
arg_dict = {}
for name, value in bound_args.arguments.items():
arg_dict[name] = value
return arg_dict
def get_shapes_dict(call_spec):
"""Convert the call() arguments dict into a dict of input shape arguments.
Example:
```
>>> get_shapes_dict(call_spec)
{"input_a_shape": (2, 3)}
```
"""
shapes_dict = {}
for k, v in call_spec.tensor_arguments_dict.items():
if k in call_spec.nested_tensor_argument_names:
shapes_dict[f"{k}_shape"] = nest.map_structure(
lambda x: backend.standardize_shape(x.shape), v
)
else:
shapes_dict[f"{k}_shape"] = backend.standardize_shape(v.shape)
return shapes_dict
def check_build_signature(build_fn, shapes_dict):
"""Asserts that the argument names in build_fn match entries in shapes_dict.
For instance if call() has the signature `def call(self, a, b)`
then we'll see `shapes_dict == {"a_shape": (...), "b_shape": (...)}
and we expect build() to have signature `def build(self, a_shape, b_shape)`.
When there is a single tensor argument, we pass it positionally and thus
don't check names (if we did, it would force call() to always take
`input` as its first argument, which is usually not the case).
"""
if len(shapes_dict) == 1:
return
if utils.is_default(build_fn):
return
sig = inspect.signature(build_fn)
expected_names = []
for name, param in sig.parameters.items():
if param.kind in (
param.POSITIONAL_OR_KEYWORD,
param.POSITIONAL_ONLY,
param.KEYWORD_ONLY,
):
expected_names.append(name)
if set(expected_names) != set(shapes_dict.keys()):
comma_separated = ", ".join(shapes_dict.keys())
raise ValueError(
"For a `call()` method with more than one tensor argument, "
"the arguments of the `build()` method should match the "
"tensor arguments of `call()` method. Here we expect the signature "
f"`build(self, {comma_separated})`."
)
CALL_CTX = threading.local()
class CallContext:
def __init__(self, entry_layer):
self.entry_layer = entry_layer
self.training = None
def is_shape_tuple(s):
return isinstance(s, (list, tuple)) and all(
d is None or isinstance(d, int) for d in s
)
def might_have_unbuilt_state(layer):
return any(not lr.built for lr in layer._layers)