keras/examples/mnist_acgan.py
2017-03-28 13:44:56 +02:00

316 lines
11 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Train an Auxiliary Classifier Generative Adversarial Network (ACGAN) on the
MNIST dataset. See https://arxiv.org/abs/1610.09585 for more details.
You should start to see reasonable images after ~5 epochs, and good images
by ~15 epochs. You should use a GPU, as the convolution-heavy operations are
very slow on the CPU. Prefer the TensorFlow backend if you plan on iterating,
as the compilation time can be a blocker using Theano.
Timings:
Hardware | Backend | Time / Epoch
-------------------------------------------
CPU | TF | 3 hrs
Titan X (maxwell) | TF | 4 min
Titan X (maxwell) | TH | 7 min
Consult https://github.com/lukedeo/keras-acgan for more information and
example output
"""
from __future__ import print_function
from collections import defaultdict
try:
import cPickle as pickle
except ImportError:
import pickle
from PIL import Image
from six.moves import range
import keras.backend as K
from keras.datasets import mnist
from keras import layers
from keras.layers import Input, Dense, Reshape, Flatten, Embedding, Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils.generic_utils import Progbar
import numpy as np
np.random.seed(1337)
K.set_image_data_format('channels_first')
def build_generator(latent_size):
# we will map a pair of (z, L), where z is a latent vector and L is a
# label drawn from P_c, to image space (..., 1, 28, 28)
cnn = Sequential()
cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
cnn.add(Dense(128 * 7 * 7, activation='relu'))
cnn.add(Reshape((128, 7, 7)))
# upsample to (..., 14, 14)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(256, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# upsample to (..., 28, 28)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(128, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# take a channel axis reduction
cnn.add(Conv2D(1, 2, padding='same',
activation='tanh',
kernel_initializer='glorot_normal'))
# this is the z space commonly refered to in GAN papers
latent = Input(shape=(latent_size, ))
# this will be our label
image_class = Input(shape=(1,), dtype='int32')
# 10 classes in MNIST
cls = Flatten()(Embedding(10, latent_size,
embeddings_initializer='glorot_normal')(image_class))
# hadamard product between z-space and a class conditional embedding
h = layers.multiply([latent, cls])
fake_image = cnn(h)
return Model([latent, image_class], fake_image)
def build_discriminator():
# build a relatively standard conv net, with LeakyReLUs as suggested in
# the reference paper
cnn = Sequential()
cnn.add(Conv2D(32, 3, padding='same', strides=2,
input_shape=(1, 28, 28)))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Conv2D(64, 3, padding='same', strides=1))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Conv2D(128, 3, padding='same', strides=2))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Conv2D(256, 3, padding='same', strides=1))
cnn.add(LeakyReLU())
cnn.add(Dropout(0.3))
cnn.add(Flatten())
image = Input(shape=(1, 28, 28))
features = cnn(image)
# first output (name=generation) is whether or not the discriminator
# thinks the image that is being shown is fake, and the second output
# (name=auxiliary) is the class that the discriminator thinks the image
# belongs to.
fake = Dense(1, activation='sigmoid', name='generation')(features)
aux = Dense(10, activation='softmax', name='auxiliary')(features)
return Model(image, [fake, aux])
if __name__ == '__main__':
# batch and latent size taken from the paper
epochs = 50
batch_size = 100
latent_size = 100
# Adam parameters suggested in https://arxiv.org/abs/1511.06434
adam_lr = 0.0002
adam_beta_1 = 0.5
# build the discriminator
discriminator = build_discriminator()
discriminator.compile(
optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss=['binary_crossentropy', 'sparse_categorical_crossentropy']
)
# build the generator
generator = build_generator(latent_size)
generator.compile(optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss='binary_crossentropy')
latent = Input(shape=(latent_size, ))
image_class = Input(shape=(1,), dtype='int32')
# get a fake image
fake = generator([latent, image_class])
# we only want to be able to train generation for the combined model
discriminator.trainable = False
fake, aux = discriminator(fake)
combined = Model([latent, image_class], [fake, aux])
combined.compile(
optimizer=Adam(lr=adam_lr, beta_1=adam_beta_1),
loss=['binary_crossentropy', 'sparse_categorical_crossentropy']
)
# get our mnist data, and force it to be of shape (..., 1, 28, 28) with
# range [-1, 1]
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=1)
X_test = (X_test.astype(np.float32) - 127.5) / 127.5
X_test = np.expand_dims(X_test, axis=1)
num_train, num_test = X_train.shape[0], X_test.shape[0]
train_history = defaultdict(list)
test_history = defaultdict(list)
for epoch in range(epochs):
print('Epoch {} of {}'.format(epoch + 1, epochs))
num_batches = int(X_train.shape[0] / batch_size)
progress_bar = Progbar(target=num_batches)
epoch_gen_loss = []
epoch_disc_loss = []
for index in range(num_batches):
progress_bar.update(index)
# generate a new batch of noise
noise = np.random.uniform(-1, 1, (batch_size, latent_size))
# get a batch of real images
image_batch = X_train[index * batch_size:(index + 1) * batch_size]
label_batch = y_train[index * batch_size:(index + 1) * batch_size]
# sample some labels from p_c
sampled_labels = np.random.randint(0, 10, batch_size)
# generate a batch of fake images, using the generated labels as a
# conditioner. We reshape the sampled labels to be
# (batch_size, 1) so that we can feed them into the embedding
# layer as a length one sequence
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=0)
X = np.concatenate((image_batch, generated_images))
y = np.array([1] * batch_size + [0] * batch_size)
aux_y = np.concatenate((label_batch, sampled_labels), axis=0)
# see if the discriminator can figure itself out...
epoch_disc_loss.append(discriminator.train_on_batch(X, [y, aux_y]))
# make new noise. we generate 2 * batch size here such that we have
# the generator optimize over an identical number of images as the
# discriminator
noise = np.random.uniform(-1, 1, (2 * batch_size, latent_size))
sampled_labels = np.random.randint(0, 10, 2 * batch_size)
# we want to train the generator to trick the discriminator
# For the generator, we want all the {fake, not-fake} labels to say
# not-fake
trick = np.ones(2 * batch_size)
epoch_gen_loss.append(combined.train_on_batch(
[noise, sampled_labels.reshape((-1, 1))],
[trick, sampled_labels]))
print('\nTesting for epoch {}:'.format(epoch + 1))
# evaluate the testing loss here
# generate a new batch of noise
noise = np.random.uniform(-1, 1, (num_test, latent_size))
# sample some labels from p_c and generate images from them
sampled_labels = np.random.randint(0, 10, num_test)
generated_images = generator.predict(
[noise, sampled_labels.reshape((-1, 1))], verbose=False)
X = np.concatenate((X_test, generated_images))
y = np.array([1] * num_test + [0] * num_test)
aux_y = np.concatenate((y_test, sampled_labels), axis=0)
# see if the discriminator can figure itself out...
discriminator_test_loss = discriminator.evaluate(
X, [y, aux_y], verbose=False)
discriminator_train_loss = np.mean(np.array(epoch_disc_loss), axis=0)
# make new noise
noise = np.random.uniform(-1, 1, (2 * num_test, latent_size))
sampled_labels = np.random.randint(0, 10, 2 * num_test)
trick = np.ones(2 * num_test)
generator_test_loss = combined.evaluate(
[noise, sampled_labels.reshape((-1, 1))],
[trick, sampled_labels], verbose=False)
generator_train_loss = np.mean(np.array(epoch_gen_loss), axis=0)
# generate an epoch report on performance
train_history['generator'].append(generator_train_loss)
train_history['discriminator'].append(discriminator_train_loss)
test_history['generator'].append(generator_test_loss)
test_history['discriminator'].append(discriminator_test_loss)
print('{0:<22s} | {1:4s} | {2:15s} | {3:5s}'.format(
'component', *discriminator.metrics_names))
print('-' * 65)
ROW_FMT = '{0:<22s} | {1:<4.2f} | {2:<15.2f} | {3:<5.2f}'
print(ROW_FMT.format('generator (train)',
*train_history['generator'][-1]))
print(ROW_FMT.format('generator (test)',
*test_history['generator'][-1]))
print(ROW_FMT.format('discriminator (train)',
*train_history['discriminator'][-1]))
print(ROW_FMT.format('discriminator (test)',
*test_history['discriminator'][-1]))
# save weights every epoch
generator.save_weights(
'params_generator_epoch_{0:03d}.hdf5'.format(epoch), True)
discriminator.save_weights(
'params_discriminator_epoch_{0:03d}.hdf5'.format(epoch), True)
# generate some digits to display
noise = np.random.uniform(-1, 1, (100, latent_size))
sampled_labels = np.array([
[i] * 10 for i in range(10)
]).reshape(-1, 1)
# get a batch to display
generated_images = generator.predict(
[noise, sampled_labels], verbose=0)
# arrange them into a grid
img = (np.concatenate([r.reshape(-1, 28)
for r in np.split(generated_images, 10)
], axis=-1) * 127.5 + 127.5).astype(np.uint8)
Image.fromarray(img).save(
'plot_epoch_{0:03d}_generated.png'.format(epoch))
pickle.dump({'train': train_history, 'test': test_history},
open('acgan-history.pkl', 'wb'))