blender/intern/cycles/kernel/kernel_camera.h

292 lines
8.7 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
/* Perspective Camera */
ccl_device float2 camera_sample_aperture(KernelGlobals *kg, float u, float v)
{
float blades = kernel_data.cam.blades;
if(blades == 0.0f) {
/* sample disk */
return concentric_sample_disk(u, v);
}
else {
/* sample polygon */
float rotation = kernel_data.cam.bladesrotation;
return regular_polygon_sample(blades, rotation, u, v);
}
}
ccl_device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
ray->P = make_float3(0.0f, 0.0f, 0.0f);
ray->D = Pcamera;
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float ft = kernel_data.cam.focaldistance/ray->D.z;
float3 Pfocus = ray->D*ft;
/* update ray for effect of lens */
ray->P = make_float3(lensuv.x, lensuv.y, 0.0f);
ray->D = normalize(Pfocus - ray->P);
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion)
transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
ray->dP = differential3_zero();
ray->dD.dx = normalize(Ddiff + float4_to_float3(kernel_data.cam.dx)) - normalize(Ddiff);
ray->dD.dy = normalize(Ddiff + float4_to_float3(kernel_data.cam.dy)) - normalize(Ddiff);
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->P += kernel_data.cam.nearclip*ray->D;
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
}
/* Orthographic Camera */
ccl_device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
ray->D = make_float3(0.0f, 0.0f, 1.0f);
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float3 Pfocus = ray->D * kernel_data.cam.focaldistance;
/* update ray for effect of lens */
float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
ray->P = Pcamera + lensuvw;
ray->D = normalize(Pfocus - lensuvw);
}
else {
ray->P = Pcamera;
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion)
transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
ray->dD = differential3_zero();
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
}
Fisheye Camera for Cycles For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
2012-05-04 16:20:51 +00:00
/* Panorama Camera */
ccl_device void camera_sample_panorama(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
{
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
/* create ray form raster position */
ray->P = make_float3(0.0f, 0.0f, 0.0f);
Fisheye Camera for Cycles For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
2012-05-04 16:20:51 +00:00
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
ray->D = panorama_to_direction(kg, Pcamera.x, Pcamera.y);
/* indicates ray should not receive any light, outside of the lens */
if(is_zero(ray->D)) {
ray->t = 0.0f;
return;
}
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float3 D = normalize(ray->D);
float3 Pfocus = D * kernel_data.cam.focaldistance;
/* calculate orthonormal coordinates perpendicular to D */
float3 U, V;
make_orthonormals(D, &U, &V);
/* update ray for effect of lens */
ray->P = U * lensuv.x + V * lensuv.y;
ray->D = normalize(Pfocus - ray->P);
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion)
transform_motion_interpolate(&cameratoworld, (const DecompMotionTransform*)&kernel_data.cam.motion, ray->time);
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
ray->dP = differential3_zero();
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
ray->dD.dx = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
ray->dD.dy = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - ray->D;
#endif
}
/* Common */
ccl_device void camera_sample(KernelGlobals *kg, int x, int y, float filter_u, float filter_v,
float lens_u, float lens_v, float time, Ray *ray)
{
/* pixel filter */
int filter_table_offset = kernel_data.film.filter_table_offset;
float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);
#ifdef __CAMERA_MOTION__
/* motion blur */
if(kernel_data.cam.shuttertime == -1.0f)
ray->time = TIME_INVALID;
else
ray->time = time;
#endif
/* sample */
if(kernel_data.cam.type == CAMERA_PERSPECTIVE)
camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
else if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
else
camera_sample_panorama(kg, raster_x, raster_y, lens_u, lens_v, ray);
}
/* Utilities */
ccl_device_inline float3 camera_position(KernelGlobals *kg)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
}
ccl_device_inline float camera_distance(KernelGlobals *kg, float3 P)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
return fabsf(dot((P - camP), camD));
}
else
return len(P - camP);
}
ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd, float3 P)
{
if(kernel_data.cam.type != CAMERA_PANORAMA) {
/* perspective / ortho */
if(sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
P += camera_position(kg);
Transform tfm = kernel_data.cam.worldtondc;
return transform_perspective(&tfm, P);
}
else {
/* panorama */
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != OBJECT_NONE)
P = normalize(transform_point(&tfm, P));
else
P = normalize(transform_direction(&tfm, P));
float2 uv = direction_to_panorama(kg, P);
return make_float3(uv.x, uv.y, 0.0f);
}
}
CCL_NAMESPACE_END