blender/intern/cycles/device/device_opencl.cpp

1178 lines
34 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#ifdef WITH_OPENCL
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "device.h"
#include "device_intern.h"
#include "buffers.h"
#include "util_foreach.h"
#include "util_map.h"
#include "util_math.h"
#include "util_md5.h"
#include "util_opencl.h"
#include "util_opengl.h"
#include "util_path.h"
#include "util_time.h"
CCL_NAMESPACE_BEGIN
#define CL_MEM_PTR(p) ((cl_mem)(uintptr_t)(p))
static cl_device_type opencl_device_type()
{
char *device = getenv("CYCLES_OPENCL_TEST");
if(device) {
if(strcmp(device, "ALL") == 0)
return CL_DEVICE_TYPE_ALL;
else if(strcmp(device, "DEFAULT") == 0)
return CL_DEVICE_TYPE_DEFAULT;
else if(strcmp(device, "CPU") == 0)
return CL_DEVICE_TYPE_CPU;
else if(strcmp(device, "GPU") == 0)
return CL_DEVICE_TYPE_GPU;
else if(strcmp(device, "ACCELERATOR") == 0)
return CL_DEVICE_TYPE_ACCELERATOR;
}
return CL_DEVICE_TYPE_ALL;
}
static bool opencl_kernel_use_debug()
{
return (getenv("CYCLES_OPENCL_DEBUG") != NULL);
}
static bool opencl_kernel_use_advanced_shading(const string& platform)
{
/* keep this in sync with kernel_types.h! */
if(platform == "NVIDIA CUDA")
return true;
else if(platform == "Apple")
return false;
else if(platform == "AMD Accelerated Parallel Processing")
return false;
else if(platform == "Intel(R) OpenCL")
return true;
return false;
}
static string opencl_kernel_build_options(const string& platform, const string *debug_src = NULL)
{
string build_options = " -cl-fast-relaxed-math ";
if(platform == "NVIDIA CUDA")
build_options += "-D__KERNEL_OPENCL_NVIDIA__ -cl-nv-maxrregcount=32 -cl-nv-verbose ";
else if(platform == "Apple")
build_options += "-D__KERNEL_OPENCL_APPLE__ -Wno-missing-prototypes ";
else if(platform == "AMD Accelerated Parallel Processing")
build_options += "-D__KERNEL_OPENCL_AMD__ ";
else if(platform == "Intel(R) OpenCL") {
build_options += "-D__KERNEL_OPENCL_INTEL_CPU__";
/* options for gdb source level kernel debugging. this segfaults on linux currently */
if(opencl_kernel_use_debug() && debug_src)
build_options += "-g -s \"" + *debug_src + "\"";
}
if(opencl_kernel_use_debug())
build_options += "-D__KERNEL_OPENCL_DEBUG__ ";
if(opencl_kernel_use_advanced_shading(platform))
build_options += "-D__KERNEL_OPENCL_NEED_ADVANCED_SHADING__ ";
return build_options;
}
/* thread safe cache for contexts and programs */
class OpenCLCache
{
struct Slot
{
thread_mutex *mutex;
cl_context context;
cl_program program;
Slot() : mutex(NULL), context(NULL), program(NULL) {}
Slot(const Slot &rhs)
: mutex(rhs.mutex)
, context(rhs.context)
, program(rhs.program)
{
/* copy can only happen in map insert, assert that */
assert(mutex == NULL);
}
~Slot()
{
delete mutex;
mutex = NULL;
}
};
/* key is combination of platform ID and device ID */
typedef pair<cl_platform_id, cl_device_id> PlatformDevicePair;
/* map of Slot objects */
typedef map<PlatformDevicePair, Slot> CacheMap;
CacheMap cache;
thread_mutex cache_lock;
/* lazy instantiate */
static OpenCLCache &global_instance()
{
static OpenCLCache instance;
return instance;
}
OpenCLCache()
{
}
~OpenCLCache()
{
/* Intel OpenCL bug raises SIGABRT due to pure virtual call
* so this is disabled. It's not necessary to free objects
* at process exit anyway.
* http://software.intel.com/en-us/forums/topic/370083#comments */
//flush();
}
/* lookup something in the cache. If this returns NULL, slot_locker
* will be holding a lock for the cache. slot_locker should refer to a
* default constructed thread_scoped_lock */
template<typename T>
static T get_something(cl_platform_id platform, cl_device_id device,
T Slot::*member, thread_scoped_lock &slot_locker)
{
assert(platform != NULL);
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
pair<CacheMap::iterator,bool> ins = self.cache.insert(
CacheMap::value_type(PlatformDevicePair(platform, device), Slot()));
Slot &slot = ins.first->second;
/* create slot lock only while holding cache lock */
if(!slot.mutex)
slot.mutex = new thread_mutex;
/* need to unlock cache before locking slot, to allow store to complete */
cache_lock.unlock();
/* lock the slot */
slot_locker = thread_scoped_lock(*slot.mutex);
/* If the thing isn't cached */
if(slot.*member == NULL) {
/* return with the caller's lock holder holding the slot lock */
return NULL;
}
/* the item was already cached, release the slot lock */
slot_locker.unlock();
return slot.*member;
}
/* store something in the cache. you MUST have tried to get the item before storing to it */
template<typename T>
static void store_something(cl_platform_id platform, cl_device_id device, T thing,
T Slot::*member, thread_scoped_lock &slot_locker)
{
assert(platform != NULL);
assert(device != NULL);
assert(thing != NULL);
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
CacheMap::iterator i = self.cache.find(PlatformDevicePair(platform, device));
cache_lock.unlock();
Slot &slot = i->second;
/* sanity check */
assert(i != self.cache.end());
assert(slot.*member == NULL);
slot.*member = thing;
/* unlock the slot */
slot_locker.unlock();
}
public:
/* see get_something comment */
static cl_context get_context(cl_platform_id platform, cl_device_id device,
thread_scoped_lock &slot_locker)
{
cl_context context = get_something<cl_context>(platform, device, &Slot::context, slot_locker);
if(!context)
return NULL;
/* caller is going to release it when done with it, so retain it */
cl_int ciErr = clRetainContext(context);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
return context;
}
/* see get_something comment */
static cl_program get_program(cl_platform_id platform, cl_device_id device,
thread_scoped_lock &slot_locker)
{
cl_program program = get_something<cl_program>(platform, device, &Slot::program, slot_locker);
if(!program)
return NULL;
/* caller is going to release it when done with it, so retain it */
cl_int ciErr = clRetainProgram(program);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
return program;
}
/* see store_something comment */
static void store_context(cl_platform_id platform, cl_device_id device, cl_context context,
thread_scoped_lock &slot_locker)
{
store_something<cl_context>(platform, device, context, &Slot::context, slot_locker);
/* increment reference count in OpenCL.
* The caller is going to release the object when done with it. */
cl_int ciErr = clRetainContext(context);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
}
/* see store_something comment */
static void store_program(cl_platform_id platform, cl_device_id device, cl_program program,
thread_scoped_lock &slot_locker)
{
store_something<cl_program>(platform, device, program, &Slot::program, slot_locker);
/* increment reference count in OpenCL.
* The caller is going to release the object when done with it. */
cl_int ciErr = clRetainProgram(program);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
}
/* discard all cached contexts and programs
* the parameter is a temporary workaround. See OpenCLCache::~OpenCLCache */
static void flush()
{
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
foreach(CacheMap::value_type &item, self.cache) {
if(item.second.program != NULL)
clReleaseProgram(item.second.program);
if(item.second.context != NULL)
clReleaseContext(item.second.context);
}
self.cache.clear();
}
};
class OpenCLDevice : public Device
{
public:
TaskPool task_pool;
cl_context cxContext;
cl_command_queue cqCommandQueue;
cl_platform_id cpPlatform;
cl_device_id cdDevice;
cl_program cpProgram;
cl_kernel ckPathTraceKernel;
cl_kernel ckFilmConvertKernel;
cl_kernel ckShaderKernel;
cl_int ciErr;
typedef map<string, device_vector<uchar>*> ConstMemMap;
typedef map<string, device_ptr> MemMap;
ConstMemMap const_mem_map;
MemMap mem_map;
device_ptr null_mem;
bool device_initialized;
string platform_name;
const char *opencl_error_string(cl_int err)
{
switch (err) {
case CL_SUCCESS: return "Success!";
case CL_DEVICE_NOT_FOUND: return "Device not found.";
case CL_DEVICE_NOT_AVAILABLE: return "Device not available";
case CL_COMPILER_NOT_AVAILABLE: return "Compiler not available";
case CL_MEM_OBJECT_ALLOCATION_FAILURE: return "Memory object allocation failure";
case CL_OUT_OF_RESOURCES: return "Out of resources";
case CL_OUT_OF_HOST_MEMORY: return "Out of host memory";
case CL_PROFILING_INFO_NOT_AVAILABLE: return "Profiling information not available";
case CL_MEM_COPY_OVERLAP: return "Memory copy overlap";
case CL_IMAGE_FORMAT_MISMATCH: return "Image format mismatch";
case CL_IMAGE_FORMAT_NOT_SUPPORTED: return "Image format not supported";
case CL_BUILD_PROGRAM_FAILURE: return "Program build failure";
case CL_MAP_FAILURE: return "Map failure";
case CL_INVALID_VALUE: return "Invalid value";
case CL_INVALID_DEVICE_TYPE: return "Invalid device type";
case CL_INVALID_PLATFORM: return "Invalid platform";
case CL_INVALID_DEVICE: return "Invalid device";
case CL_INVALID_CONTEXT: return "Invalid context";
case CL_INVALID_QUEUE_PROPERTIES: return "Invalid queue properties";
case CL_INVALID_COMMAND_QUEUE: return "Invalid command queue";
case CL_INVALID_HOST_PTR: return "Invalid host pointer";
case CL_INVALID_MEM_OBJECT: return "Invalid memory object";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR: return "Invalid image format descriptor";
case CL_INVALID_IMAGE_SIZE: return "Invalid image size";
case CL_INVALID_SAMPLER: return "Invalid sampler";
case CL_INVALID_BINARY: return "Invalid binary";
case CL_INVALID_BUILD_OPTIONS: return "Invalid build options";
case CL_INVALID_PROGRAM: return "Invalid program";
case CL_INVALID_PROGRAM_EXECUTABLE: return "Invalid program executable";
case CL_INVALID_KERNEL_NAME: return "Invalid kernel name";
case CL_INVALID_KERNEL_DEFINITION: return "Invalid kernel definition";
case CL_INVALID_KERNEL: return "Invalid kernel";
case CL_INVALID_ARG_INDEX: return "Invalid argument index";
case CL_INVALID_ARG_VALUE: return "Invalid argument value";
case CL_INVALID_ARG_SIZE: return "Invalid argument size";
case CL_INVALID_KERNEL_ARGS: return "Invalid kernel arguments";
case CL_INVALID_WORK_DIMENSION: return "Invalid work dimension";
case CL_INVALID_WORK_GROUP_SIZE: return "Invalid work group size";
case CL_INVALID_WORK_ITEM_SIZE: return "Invalid work item size";
case CL_INVALID_GLOBAL_OFFSET: return "Invalid global offset";
case CL_INVALID_EVENT_WAIT_LIST: return "Invalid event wait list";
case CL_INVALID_EVENT: return "Invalid event";
case CL_INVALID_OPERATION: return "Invalid operation";
case CL_INVALID_GL_OBJECT: return "Invalid OpenGL object";
case CL_INVALID_BUFFER_SIZE: return "Invalid buffer size";
case CL_INVALID_MIP_LEVEL: return "Invalid mip-map level";
default: return "Unknown";
}
}
bool opencl_error(cl_int err)
{
if(err != CL_SUCCESS) {
string message = string_printf("OpenCL error (%d): %s", err, opencl_error_string(err));
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
return true;
}
return false;
}
void opencl_error(const string& message)
{
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
}
void opencl_assert(cl_int err)
{
if(err != CL_SUCCESS) {
string message = string_printf("OpenCL error (%d): %s", err, opencl_error_string(err));
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
#ifndef NDEBUG
abort();
#endif
}
}
OpenCLDevice(DeviceInfo& info, Stats &stats, bool background_)
: Device(stats)
{
background = background_;
cpPlatform = NULL;
cdDevice = NULL;
cxContext = NULL;
cqCommandQueue = NULL;
cpProgram = NULL;
ckPathTraceKernel = NULL;
ckFilmConvertKernel = NULL;
ckShaderKernel = NULL;
null_mem = 0;
device_initialized = false;
/* setup platform */
cl_uint num_platforms;
ciErr = clGetPlatformIDs(0, NULL, &num_platforms);
if(opencl_error(ciErr))
return;
if(num_platforms == 0) {
opencl_error("OpenCL: no platforms found.");
return;
}
vector<cl_platform_id> platforms(num_platforms, NULL);
ciErr = clGetPlatformIDs(num_platforms, &platforms[0], NULL);
if(opencl_error(ciErr))
return;
int num_base = 0;
int total_devices = 0;
for (int platform = 0; platform < num_platforms; platform++) {
cl_uint num_devices;
if(opencl_error(clGetDeviceIDs(platforms[platform], opencl_device_type(), 0, NULL, &num_devices)))
return;
total_devices += num_devices;
if(info.num - num_base >= num_devices) {
/* num doesn't refer to a device in this platform */
num_base += num_devices;
continue;
}
/* device is in this platform */
cpPlatform = platforms[platform];
/* get devices */
vector<cl_device_id> device_ids(num_devices, NULL);
if(opencl_error(clGetDeviceIDs(cpPlatform, opencl_device_type(), num_devices, &device_ids[0], NULL)))
return;
cdDevice = device_ids[info.num - num_base];
char name[256];
clGetPlatformInfo(cpPlatform, CL_PLATFORM_NAME, sizeof(name), &name, NULL);
platform_name = name;
break;
}
if(total_devices == 0) {
opencl_error("OpenCL: no devices found.");
return;
}
else if(!cdDevice) {
opencl_error("OpenCL: specified device not found.");
return;
}
{
/* try to use cached context */
thread_scoped_lock cache_locker;
cxContext = OpenCLCache::get_context(cpPlatform, cdDevice, cache_locker);
if(cxContext == NULL) {
/* create context properties array to specify platform */
const cl_context_properties context_props[] = {
CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform,
0, 0
};
/* create context */
cxContext = clCreateContext(context_props, 1, &cdDevice,
context_notify_callback, cdDevice, &ciErr);
if(opencl_error(ciErr))
return;
/* cache it */
OpenCLCache::store_context(cpPlatform, cdDevice, cxContext, cache_locker);
}
}
cqCommandQueue = clCreateCommandQueue(cxContext, cdDevice, 0, &ciErr);
if(opencl_error(ciErr))
return;
null_mem = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_ONLY, 1, NULL, &ciErr);
if(opencl_error(ciErr))
return;
device_initialized = true;
}
static void context_notify_callback(const char *err_info,
const void *private_info, size_t cb, void *user_data)
{
char name[256];
clGetDeviceInfo((cl_device_id)user_data, CL_DEVICE_NAME, sizeof(name), &name, NULL);
fprintf(stderr, "OpenCL error (%s): %s\n", name, err_info);
}
bool opencl_version_check()
{
char version[256];
int major, minor, req_major = 1, req_minor = 1;
clGetPlatformInfo(cpPlatform, CL_PLATFORM_VERSION, sizeof(version), &version, NULL);
if(sscanf(version, "OpenCL %d.%d", &major, &minor) < 2) {
opencl_error(string_printf("OpenCL: failed to parse platform version string (%s).", version));
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
opencl_error(string_printf("OpenCL: platform version 1.1 or later required, found %d.%d", major, minor));
return false;
}
clGetDeviceInfo(cdDevice, CL_DEVICE_OPENCL_C_VERSION, sizeof(version), &version, NULL);
if(sscanf(version, "OpenCL C %d.%d", &major, &minor) < 2) {
opencl_error(string_printf("OpenCL: failed to parse OpenCL C version string (%s).", version));
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
opencl_error(string_printf("OpenCL: C version 1.1 or later required, found %d.%d", major, minor));
return false;
}
return true;
}
bool load_binary(const string& kernel_path, const string& clbin, const string *debug_src = NULL)
{
/* read binary into memory */
vector<uint8_t> binary;
if(!path_read_binary(clbin, binary)) {
opencl_error(string_printf("OpenCL failed to read cached binary %s.", clbin.c_str()));
return false;
}
/* create program */
cl_int status;
size_t size = binary.size();
const uint8_t *bytes = &binary[0];
cpProgram = clCreateProgramWithBinary(cxContext, 1, &cdDevice,
&size, &bytes, &status, &ciErr);
if(opencl_error(status) || opencl_error(ciErr)) {
opencl_error(string_printf("OpenCL failed create program from cached binary %s.", clbin.c_str()));
return false;
}
if(!build_kernel(kernel_path, debug_src))
return false;
return true;
}
bool save_binary(const string& clbin)
{
size_t size = 0;
clGetProgramInfo(cpProgram, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);
if(!size)
return false;
vector<uint8_t> binary(size);
uint8_t *bytes = &binary[0];
clGetProgramInfo(cpProgram, CL_PROGRAM_BINARIES, sizeof(uint8_t*), &bytes, NULL);
if(!path_write_binary(clbin, binary)) {
opencl_error(string_printf("OpenCL failed to write cached binary %s.", clbin.c_str()));
return false;
}
return true;
}
bool build_kernel(const string& kernel_path, const string *debug_src = NULL)
{
string build_options = opencl_kernel_build_options(platform_name, debug_src);
ciErr = clBuildProgram(cpProgram, 0, NULL, build_options.c_str(), NULL, NULL);
/* show warnings even if build is successful */
size_t ret_val_size = 0;
clGetProgramBuildInfo(cpProgram, cdDevice, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
if(ret_val_size > 1) {
vector<char> build_log(ret_val_size+1);
clGetProgramBuildInfo(cpProgram, cdDevice, CL_PROGRAM_BUILD_LOG, ret_val_size, &build_log[0], NULL);
build_log[ret_val_size] = '\0';
fprintf(stderr, "OpenCL kernel build output:\n");
fprintf(stderr, "%s\n", &build_log[0]);
}
if(ciErr != CL_SUCCESS) {
opencl_error("OpenCL build failed: errors in console");
return false;
}
return true;
}
bool compile_kernel(const string& kernel_path, const string& kernel_md5, const string *debug_src = NULL)
{
/* we compile kernels consisting of many files. unfortunately opencl
2012-06-09 17:22:52 +00:00
* kernel caches do not seem to recognize changes in included files.
* so we force recompile on changes by adding the md5 hash of all files */
string source = "#include \"kernel.cl\" // " + kernel_md5 + "\n";
source = path_source_replace_includes(source, kernel_path);
if(debug_src)
path_write_text(*debug_src, source);
size_t source_len = source.size();
const char *source_str = source.c_str();
cpProgram = clCreateProgramWithSource(cxContext, 1, &source_str, &source_len, &ciErr);
if(opencl_error(ciErr))
return false;
double starttime = time_dt();
printf("Compiling OpenCL kernel ...\n");
if(!build_kernel(kernel_path, debug_src))
return false;
printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);
return true;
}
string device_md5_hash()
{
MD5Hash md5;
char version[256], driver[256], name[256], vendor[256];
clGetPlatformInfo(cpPlatform, CL_PLATFORM_VENDOR, sizeof(vendor), &vendor, NULL);
clGetDeviceInfo(cdDevice, CL_DEVICE_VERSION, sizeof(version), &version, NULL);
clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(name), &name, NULL);
clGetDeviceInfo(cdDevice, CL_DRIVER_VERSION, sizeof(driver), &driver, NULL);
md5.append((uint8_t*)vendor, strlen(vendor));
md5.append((uint8_t*)version, strlen(version));
md5.append((uint8_t*)name, strlen(name));
md5.append((uint8_t*)driver, strlen(driver));
string options = opencl_kernel_build_options(platform_name);
md5.append((uint8_t*)options.c_str(), options.size());
return md5.get_hex();
}
bool load_kernels(bool experimental)
{
/* verify if device was initialized */
if(!device_initialized) {
fprintf(stderr, "OpenCL: failed to initialize device.\n");
return false;
}
/* try to use cached kernel */
thread_scoped_lock cache_locker;
cpProgram = OpenCLCache::get_program(cpPlatform, cdDevice, cache_locker);
if(!cpProgram) {
/* verify we have right opencl version */
if(!opencl_version_check())
return false;
/* md5 hash to detect changes */
string kernel_path = path_get("kernel");
string kernel_md5 = path_files_md5_hash(kernel_path);
string device_md5 = device_md5_hash();
/* path to cached binary */
string clbin = string_printf("cycles_kernel_%s_%s.clbin", device_md5.c_str(), kernel_md5.c_str());
clbin = path_user_get(path_join("cache", clbin));
/* path to preprocessed source for debugging */
string clsrc, *debug_src = NULL;
if(opencl_kernel_use_debug()) {
clsrc = string_printf("cycles_kernel_%s_%s.cl", device_md5.c_str(), kernel_md5.c_str());
clsrc = path_user_get(path_join("cache", clsrc));
debug_src = &clsrc;
}
/* if exists already, try use it */
if(path_exists(clbin) && load_binary(kernel_path, clbin, debug_src)) {
/* kernel loaded from binary */
}
else {
/* if does not exist or loading binary failed, compile kernel */
if(!compile_kernel(kernel_path, kernel_md5, debug_src))
return false;
/* save binary for reuse */
if(!save_binary(clbin))
return false;
}
/* cache the program */
OpenCLCache::store_program(cpPlatform, cdDevice, cpProgram, cache_locker);
}
/* find kernels */
ckPathTraceKernel = clCreateKernel(cpProgram, "kernel_ocl_path_trace", &ciErr);
if(opencl_error(ciErr))
return false;
ckFilmConvertKernel = clCreateKernel(cpProgram, "kernel_ocl_tonemap", &ciErr);
if(opencl_error(ciErr))
return false;
ckShaderKernel = clCreateKernel(cpProgram, "kernel_ocl_shader", &ciErr);
if(opencl_error(ciErr))
return false;
return true;
}
~OpenCLDevice()
{
task_pool.stop();
if(null_mem)
clReleaseMemObject(CL_MEM_PTR(null_mem));
ConstMemMap::iterator mt;
for(mt = const_mem_map.begin(); mt != const_mem_map.end(); mt++) {
mem_free(*(mt->second));
delete mt->second;
}
if(ckPathTraceKernel)
clReleaseKernel(ckPathTraceKernel);
if(ckFilmConvertKernel)
clReleaseKernel(ckFilmConvertKernel);
if(cpProgram)
clReleaseProgram(cpProgram);
if(cqCommandQueue)
clReleaseCommandQueue(cqCommandQueue);
if(cxContext)
clReleaseContext(cxContext);
}
void mem_alloc(device_memory& mem, MemoryType type)
{
size_t size = mem.memory_size();
cl_mem_flags mem_flag;
void *mem_ptr = NULL;
if(type == MEM_READ_ONLY)
mem_flag = CL_MEM_READ_ONLY;
else if(type == MEM_WRITE_ONLY)
mem_flag = CL_MEM_WRITE_ONLY;
else
mem_flag = CL_MEM_READ_WRITE;
mem.device_pointer = (device_ptr)clCreateBuffer(cxContext, mem_flag, size, mem_ptr, &ciErr);
opencl_assert(ciErr);
stats.mem_alloc(size);
}
void mem_copy_to(device_memory& mem)
{
/* this is blocking */
size_t size = mem.memory_size();
ciErr = clEnqueueWriteBuffer(cqCommandQueue, CL_MEM_PTR(mem.device_pointer), CL_TRUE, 0, size, (void*)mem.data_pointer, 0, NULL, NULL);
opencl_assert(ciErr);
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
size_t offset = elem*y*w;
size_t size = elem*w*h;
ciErr = clEnqueueReadBuffer(cqCommandQueue, CL_MEM_PTR(mem.device_pointer), CL_TRUE, offset, size, (uchar*)mem.data_pointer + offset, 0, NULL, NULL);
opencl_assert(ciErr);
}
void mem_zero(device_memory& mem)
{
if(mem.device_pointer) {
memset((void*)mem.data_pointer, 0, mem.memory_size());
mem_copy_to(mem);
}
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
ciErr = clReleaseMemObject(CL_MEM_PTR(mem.device_pointer));
mem.device_pointer = 0;
opencl_assert(ciErr);
stats.mem_free(mem.memory_size());
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
ConstMemMap::iterator i = const_mem_map.find(name);
if(i == const_mem_map.end()) {
device_vector<uchar> *data = new device_vector<uchar>();
data->copy((uchar*)host, size);
mem_alloc(*data, MEM_READ_ONLY);
i = const_mem_map.insert(ConstMemMap::value_type(name, data)).first;
}
else {
device_vector<uchar> *data = i->second;
data->copy((uchar*)host, size);
}
mem_copy_to(*i->second);
}
void tex_alloc(const char *name, device_memory& mem, bool interpolation, bool periodic)
{
mem_alloc(mem, MEM_READ_ONLY);
mem_copy_to(mem);
assert(mem_map.find(name) == mem_map.end());
mem_map.insert(MemMap::value_type(name, mem.device_pointer));
}
void tex_free(device_memory& mem)
{
if(mem.data_pointer)
mem_free(mem);
}
size_t global_size_round_up(int group_size, int global_size)
{
int r = global_size % group_size;
return global_size + ((r == 0)? 0: group_size - r);
}
void enqueue_kernel(cl_kernel kernel, size_t w, size_t h)
{
size_t workgroup_size, max_work_items[3];
clGetKernelWorkGroupInfo(kernel, cdDevice,
CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &workgroup_size, NULL);
clGetDeviceInfo(cdDevice,
CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*3, max_work_items, NULL);
/* try to divide evenly over 2 dimensions */
size_t sqrt_workgroup_size = max(sqrt((double)workgroup_size), 1.0);
size_t local_size[2] = {sqrt_workgroup_size, sqrt_workgroup_size};
/* some implementations have max size 1 on 2nd dimension */
if(local_size[1] > max_work_items[1]) {
local_size[0] = workgroup_size/max_work_items[1];
local_size[1] = max_work_items[1];
}
size_t global_size[2] = {global_size_round_up(local_size[0], w), global_size_round_up(local_size[1], h)};
/* run kernel */
ciErr = clEnqueueNDRangeKernel(cqCommandQueue, kernel, 2, NULL, global_size, local_size, 0, NULL, NULL);
opencl_assert(ciErr);
opencl_assert(clFlush(cqCommandQueue));
}
void path_trace(RenderTile& rtile, int sample)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_buffer = CL_MEM_PTR(rtile.buffer);
cl_mem d_rng_state = CL_MEM_PTR(rtile.rng_state);
cl_int d_x = rtile.x;
cl_int d_y = rtile.y;
cl_int d_w = rtile.w;
cl_int d_h = rtile.h;
cl_int d_sample = sample;
cl_int d_offset = rtile.offset;
cl_int d_stride = rtile.stride;
/* sample arguments */
cl_uint narg = 0;
ciErr = 0;
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_data), (void*)&d_data);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_buffer), (void*)&d_buffer);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_rng_state), (void*)&d_rng_state);
#define KERNEL_TEX(type, ttype, name) \
ciErr |= set_kernel_arg_mem(ckPathTraceKernel, &narg, #name);
#include "kernel_textures.h"
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_sample), (void*)&d_sample);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_x), (void*)&d_x);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_y), (void*)&d_y);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_w), (void*)&d_w);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_h), (void*)&d_h);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_offset), (void*)&d_offset);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_stride), (void*)&d_stride);
opencl_assert(ciErr);
enqueue_kernel(ckPathTraceKernel, d_w, d_h);
}
cl_int set_kernel_arg_mem(cl_kernel kernel, cl_uint *narg, const char *name)
{
cl_mem ptr;
cl_int err = 0;
MemMap::iterator i = mem_map.find(name);
if(i != mem_map.end()) {
ptr = CL_MEM_PTR(i->second);
}
else {
/* work around NULL not working, even though the spec says otherwise */
ptr = CL_MEM_PTR(null_mem);
}
err |= clSetKernelArg(kernel, (*narg)++, sizeof(ptr), (void*)&ptr);
opencl_assert(err);
return err;
}
void tonemap(DeviceTask& task, device_ptr buffer, device_ptr rgba)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_rgba = CL_MEM_PTR(rgba);
cl_mem d_buffer = CL_MEM_PTR(buffer);
cl_int d_x = task.x;
cl_int d_y = task.y;
cl_int d_w = task.w;
cl_int d_h = task.h;
cl_int d_sample = task.sample;
cl_int d_offset = task.offset;
cl_int d_stride = task.stride;
/* sample arguments */
cl_uint narg = 0;
ciErr = 0;
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_data), (void*)&d_data);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_rgba), (void*)&d_rgba);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_buffer), (void*)&d_buffer);
#define KERNEL_TEX(type, ttype, name) \
ciErr |= set_kernel_arg_mem(ckFilmConvertKernel, &narg, #name);
#include "kernel_textures.h"
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_sample), (void*)&d_sample);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_x), (void*)&d_x);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_y), (void*)&d_y);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_w), (void*)&d_w);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_h), (void*)&d_h);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_offset), (void*)&d_offset);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_stride), (void*)&d_stride);
opencl_assert(ciErr);
enqueue_kernel(ckFilmConvertKernel, d_w, d_h);
}
void shader(DeviceTask& task)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_input = CL_MEM_PTR(task.shader_input);
cl_mem d_output = CL_MEM_PTR(task.shader_output);
cl_int d_shader_eval_type = task.shader_eval_type;
cl_int d_shader_x = task.shader_x;
cl_int d_shader_w = task.shader_w;
/* sample arguments */
cl_uint narg = 0;
ciErr = 0;
ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_data), (void*)&d_data);
ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_input), (void*)&d_input);
ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_output), (void*)&d_output);
#define KERNEL_TEX(type, ttype, name) \
ciErr |= set_kernel_arg_mem(ckShaderKernel, &narg, #name);
#include "kernel_textures.h"
ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_shader_eval_type), (void*)&d_shader_eval_type);
ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_shader_x), (void*)&d_shader_x);
ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_shader_w), (void*)&d_shader_w);
opencl_assert(ciErr);
enqueue_kernel(ckShaderKernel, task.shader_w, 1);
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::TONEMAP) {
tonemap(*task, task->buffer, task->rgba);
}
else if(task->type == DeviceTask::SHADER) {
shader(*task);
}
else if(task->type == DeviceTask::PATH_TRACE) {
RenderTile tile;
/* keep rendering tiles until done */
while(task->acquire_tile(this, tile)) {
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
for(int sample = start_sample; sample < end_sample; sample++) {
if(task->get_cancel()) {
if(task->need_finish_queue == false)
break;
}
path_trace(tile, sample);
tile.sample = sample + 1;
//task->update_progress(tile);
}
task->release_tile(tile);
}
}
}
class OpenCLDeviceTask : public DeviceTask {
public:
OpenCLDeviceTask(OpenCLDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&OpenCLDevice::thread_run, device, this);
}
};
void task_add(DeviceTask& task)
{
task_pool.push(new OpenCLDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
};
Device *device_opencl_create(DeviceInfo& info, Stats &stats, bool background)
{
return new OpenCLDevice(info, stats, background);
}
void device_opencl_info(vector<DeviceInfo>& devices)
{
vector<cl_device_id> device_ids;
cl_uint num_devices = 0;
vector<cl_platform_id> platform_ids;
cl_uint num_platforms = 0;
/* get devices */
if(clGetPlatformIDs(0, NULL, &num_platforms) != CL_SUCCESS || num_platforms == 0)
return;
platform_ids.resize(num_platforms);
if(clGetPlatformIDs(num_platforms, &platform_ids[0], NULL) != CL_SUCCESS)
return;
/* devices are numbered consecutively across platforms */
int num_base = 0;
for (int platform = 0; platform < num_platforms; platform++, num_base += num_devices) {
num_devices = 0;
if(clGetDeviceIDs(platform_ids[platform], opencl_device_type(), 0, NULL, &num_devices) != CL_SUCCESS || num_devices == 0)
continue;
device_ids.resize(num_devices);
if(clGetDeviceIDs(platform_ids[platform], opencl_device_type(), num_devices, &device_ids[0], NULL) != CL_SUCCESS)
continue;
char pname[256];
clGetPlatformInfo(platform_ids[platform], CL_PLATFORM_NAME, sizeof(pname), &pname, NULL);
string platform_name = pname;
/* add devices */
for(int num = 0; num < num_devices; num++) {
cl_device_id device_id = device_ids[num];
char name[1024] = "\0";
if(clGetDeviceInfo(device_id, CL_DEVICE_NAME, sizeof(name), &name, NULL) != CL_SUCCESS)
continue;
DeviceInfo info;
info.type = DEVICE_OPENCL;
info.description = string(name);
info.num = num_base + num;
info.id = string_printf("OPENCL_%d", info.num);
/* we don't know if it's used for display, but assume it is */
info.display_device = true;
info.advanced_shading = opencl_kernel_use_advanced_shading(platform_name);
info.pack_images = true;
devices.push_back(info);
}
}
}
CCL_NAMESPACE_END
#endif /* WITH_OPENCL */