blender/intern/cycles/kernel/kernel_volume.h

418 lines
13 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
CCL_NAMESPACE_BEGIN
typedef enum VolumeIntegrateResult {
VOLUME_PATH_TERMINATED = 0,
VOLUME_PATH_SCATTERED = 1,
VOLUME_PATH_ATTENUATED = 2,
VOLUME_PATH_MISSED = 3
} VolumeIntegrateResult;
/* Volume shader properties
*
* extinction coefficient = absorption coefficient + scattering coefficient
* sigma_t = sigma_a + sigma_s */
typedef struct VolumeShaderCoefficients {
float3 sigma_a;
float3 sigma_s;
float3 emission;
} VolumeShaderCoefficients;
/* evaluate shader to get extinction coefficient at P */
ccl_device bool volume_shader_extinction_sample(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack, int path_flag, ShaderContext ctx, float3 P, float3 *extinction)
{
sd->P = P;
shader_eval_volume(kg, sd, stack, 0.0f, path_flag, ctx);
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER)))
return false;
float3 sigma_t = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_VOLUME(sc->type))
sigma_t += sc->weight;
}
*extinction = sigma_t;
return true;
}
/* evaluate shader to get absorption, scattering and emission at P */
ccl_device bool volume_shader_sample(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack, int path_flag, ShaderContext ctx, float3 P, VolumeShaderCoefficients *sample)
{
sd->P = P;
shader_eval_volume(kg, sd, stack, 0.0f, path_flag, ctx);
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER|SD_EMISSION)))
return false;
sample->sigma_a = make_float3(0.0f, 0.0f, 0.0f);
sample->sigma_s = make_float3(0.0f, 0.0f, 0.0f);
sample->emission = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(sc->type == CLOSURE_VOLUME_ABSORPTION_ID)
sample->sigma_a += sc->weight;
else if(sc->type == CLOSURE_EMISSION_ID)
sample->emission += sc->weight;
else if(CLOSURE_IS_VOLUME(sc->type))
sample->sigma_s += sc->weight;
}
return true;
}
ccl_device float3 volume_color_attenuation(float3 sigma, float t)
{
return make_float3(expf(-sigma.x * t), expf(-sigma.y * t), expf(-sigma.z * t));
}
ccl_device bool volume_stack_is_heterogeneous(KernelGlobals *kg, VolumeStack *stack)
{
for(int i = 0; stack[i].shader != SHADER_NO_ID; i++) {
int shader_flag = kernel_tex_fetch(__shader_flag, (stack[i].shader & SHADER_MASK)*2);
if(shader_flag & SD_HETEROGENEOUS_VOLUME)
return true;
}
return false;
}
/* Volumetric Shadows
*
* These functions are used to attenuate shadow rays to lights. Both absorption
* and scattering will block light, represented by the extinction coefficient. */
/* homogenous volume: assume shader evaluation at the starts gives
* the extinction coefficient for the entire line segment */
ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
{
ShaderContext ctx = SHADER_CONTEXT_SHADOW;
int path_flag = PATH_RAY_SHADOW;
float3 sigma_t;
if(volume_shader_extinction_sample(kg, sd, state->volume_stack, path_flag, ctx, ray->P, &sigma_t))
*throughput *= volume_color_attenuation(sigma_t, ray->t);
}
/* heterogeneous volume: integrate stepping through the volume until we
* reach the end, get absorbed entirely, or run out of iterations */
ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
{
ShaderContext ctx = SHADER_CONTEXT_SHADOW;
int path_flag = PATH_RAY_SHADOW;
float3 tp = *throughput;
const float tp_eps = 1e-10f; /* todo: this is likely not the right value */
/* prepare for stepping */
int max_steps = kernel_data.integrator.volume_max_steps;
float step = kernel_data.integrator.volume_step_size;
float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step;
/* compute extinction at the start */
float t = 0.0f;
float3 P = ray->P;
float3 sigma_t;
if(!volume_shader_extinction_sample(kg, sd, state->volume_stack, path_flag, ctx, P, &sigma_t))
sigma_t = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < max_steps; i++) {
/* advance to new position */
float new_t = min(ray->t, t + random_jitter_offset + i * step);
float3 new_P = ray->P + ray->D * new_t;
float3 new_sigma_t;
/* compute attenuation over segment */
if(volume_shader_extinction_sample(kg, sd, state->volume_stack, path_flag, ctx, new_P, &new_sigma_t)) {
/* todo: we could avoid computing expf() for each step by summing,
* because exp(a)*exp(b) = exp(a+b), but we still want a quick
* tp_eps check too */
tp *= volume_color_attenuation(0.5f*(sigma_t + new_sigma_t), new_t - t);
/* stop if nearly all light blocked */
if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps)
break;
sigma_t = new_sigma_t;
}
else {
/* skip empty space */
sigma_t = make_float3(0.0f, 0.0f, 0.0f);
}
/* stop if at the end of the volume */
t = new_t;
if(t == ray->t)
break;
}
*throughput = tp;
}
/* get the volume attenuation over line segment defined by ray, with the
* assumption that there are no surfaces blocking light between the endpoints */
ccl_device void kernel_volume_shadow(KernelGlobals *kg, PathState *state, Ray *ray, float3 *throughput)
{
ShaderData sd;
shader_setup_from_volume(kg, &sd, ray, state->bounce);
if(volume_stack_is_heterogeneous(kg, state->volume_stack))
kernel_volume_shadow_heterogeneous(kg, state, ray, &sd, throughput);
else
kernel_volume_shadow_homogeneous(kg, state, ray, &sd, throughput);
}
/* Volumetric Path */
/* homogenous volume: assume shader evaluation at the starts gives
* the volume shading coefficient for the entire line segment */
ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput)
{
ShaderContext ctx = SHADER_CONTEXT_VOLUME;
int path_flag = PATH_RAY_SHADOW;
VolumeShaderCoefficients coeff;
if(!volume_shader_sample(kg, sd, state->volume_stack, path_flag, ctx, ray->P, &coeff))
return VOLUME_PATH_MISSED;
/* todo: in principle the SD_EMISSION, SD_ABSORPTION and SD_SCATTER flags
* should ensure that one of the components is > 0 and so no division by
* zero occurs, however this needs to be double-checked and tested */
int closure_flag = sd->flag;
float t = ray->t;
/* compute attenuation from absorption */
float3 attenuation;
if(closure_flag & SD_ABSORPTION)
attenuation = volume_color_attenuation(coeff.sigma_a, t);
/* integrate emission attenuated by absorption
* integral E * exp(-sigma_a * t) from 0 to t = E * (1 - exp(-sigma_a * t))/sigma_a
* this goes to E * t as sigma_a goes to zero
*
* todo: we should use an epsilon to avoid precision issues near zero sigma_a */
if(closure_flag & SD_EMISSION) {
float3 emission = coeff.emission;
if(closure_flag & SD_ABSORPTION) {
float3 sigma_a = coeff.sigma_a;
emission.x *= (sigma_a.x > 0.0f)? (1.0f - attenuation.x)/sigma_a.x: t;
emission.y *= (sigma_a.y > 0.0f)? (1.0f - attenuation.y)/sigma_a.y: t;
emission.z *= (sigma_a.z > 0.0f)? (1.0f - attenuation.z)/sigma_a.z: t;
}
else
emission *= t;
path_radiance_accum_emission(L, *throughput, emission, state->bounce);
}
/* modify throughput */
if(closure_flag & SD_ABSORPTION)
*throughput *= attenuation;
return VOLUME_PATH_ATTENUATED;
}
/* heterogeneous volume: integrate stepping through the volume until we
* reach the end, get absorbed entirely, or run out of iterations */
ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput)
{
ShaderContext ctx = SHADER_CONTEXT_VOLUME;
int path_flag = PATH_RAY_SHADOW;
VolumeShaderCoefficients coeff;
float3 tp = *throughput;
const float tp_eps = 1e-10f; /* todo: this is likely not the right value */
/* prepare for stepping */
int max_steps = kernel_data.integrator.volume_max_steps;
float step = kernel_data.integrator.volume_step_size;
float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step;
/* compute coefficients at the start */
float t = 0.0f;
float3 P = ray->P;
if(!volume_shader_sample(kg, sd, state->volume_stack, path_flag, ctx, P, &coeff)) {
coeff.sigma_a = make_float3(0.0f, 0.0f, 0.0f);
coeff.sigma_s = make_float3(0.0f, 0.0f, 0.0f);
coeff.emission = make_float3(0.0f, 0.0f, 0.0f);
}
for(int i = 0; i < max_steps; i++) {
/* advance to new position */
float new_t = min(ray->t, t + random_jitter_offset + i * step);
float3 new_P = ray->P + ray->D * new_t;
VolumeShaderCoefficients new_coeff;
/* compute attenuation over segment */
if(volume_shader_sample(kg, sd, state->volume_stack, path_flag, ctx, new_P, &new_coeff)) {
int closure_flag = sd->flag;
float dt = new_t - t;
/* compute attenuation from absorption */
float3 attenuation, sigma_a;
if(closure_flag & SD_ABSORPTION) {
/* todo: we could avoid computing expf() for each step by summing,
* because exp(a)*exp(b) = exp(a+b), but we still want a quick
* tp_eps check too */
sigma_a = 0.5f*(coeff.sigma_a + new_coeff.sigma_a);
attenuation = volume_color_attenuation(sigma_a, dt);
}
/* integrate emission attenuated by absorption
* integral E * exp(-sigma_a * t) from 0 to t = E * (1 - exp(-sigma_a * t))/sigma_a
* this goes to E * t as sigma_a goes to zero
*
* todo: we should use an epsilon to avoid precision issues near zero sigma_a */
if(closure_flag & SD_EMISSION) {
float3 emission = 0.5f*(coeff.emission + new_coeff.emission);
if(closure_flag & SD_ABSORPTION) {
emission.x *= (sigma_a.x > 0.0f)? (1.0f - attenuation.x)/sigma_a.x: dt;
emission.y *= (sigma_a.y > 0.0f)? (1.0f - attenuation.y)/sigma_a.y: dt;
emission.z *= (sigma_a.z > 0.0f)? (1.0f - attenuation.z)/sigma_a.z: dt;
}
else
emission *= t;
path_radiance_accum_emission(L, tp, emission, state->bounce);
}
/* modify throughput */
if(closure_flag & SD_ABSORPTION) {
tp *= attenuation;
/* stop if nearly all light blocked */
if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps) {
tp = make_float3(0.0f, 0.0f, 0.0f);
break;
}
}
coeff = new_coeff;
}
else {
/* skip empty space */
coeff.sigma_a = make_float3(0.0f, 0.0f, 0.0f);
coeff.sigma_s = make_float3(0.0f, 0.0f, 0.0f);
coeff.emission = make_float3(0.0f, 0.0f, 0.0f);
}
/* stop if at the end of the volume */
t = new_t;
if(t == ray->t)
break;
}
*throughput = tp;
return VOLUME_PATH_ATTENUATED;
}
/* get the volume attenuation and emission over line segment defined by
* ray, with the assumption that there are no surfaces blocking light
* between the endpoints */
ccl_device VolumeIntegrateResult kernel_volume_integrate(KernelGlobals *kg, PathState *state, Ray *ray, PathRadiance *L, float3 *throughput)
{
ShaderData sd;
shader_setup_from_volume(kg, &sd, ray, state->bounce);
if(volume_stack_is_heterogeneous(kg, state->volume_stack))
return kernel_volume_integrate_heterogeneous(kg, state, ray, &sd, L, throughput);
else
return kernel_volume_integrate_homogeneous(kg, state, ray, &sd, L, throughput);
}
/* Volume Stack
*
* This is an array of object/shared ID's that the current segment of the path
* is inside of. */
ccl_device void kernel_volume_stack_init(KernelGlobals *kg, VolumeStack *stack)
{
/* todo: this assumes camera is always in air, need to detect when it isn't */
if(kernel_data.background.volume_shader == SHADER_NO_ID) {
stack[0].shader = SHADER_NO_ID;
}
else {
stack[0].shader = kernel_data.background.volume_shader;
stack[0].object = ~0;
stack[1].shader = SHADER_NO_ID;
}
}
ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack)
{
/* todo: we should have some way for objects to indicate if they want the
* world shader to work inside them. excluding it by default is problematic
* because non-volume objects can't be assumed to be closed manifolds */
if(!(sd->flag & SD_HAS_VOLUME))
return;
if(sd->flag & SD_BACKFACING) {
/* exit volume object: remove from stack */
for(int i = 0; stack[i].shader != SHADER_NO_ID; i++) {
if(stack[i].object == sd->object) {
/* shift back next stack entries */
do {
stack[i] = stack[i+1];
i++;
}
while(stack[i].shader != SHADER_NO_ID);
return;
}
}
}
else {
/* enter volume object: add to stack */
int i;
for(i = 0; stack[i].shader != SHADER_NO_ID; i++) {
/* already in the stack? then we have nothing to do */
if(stack[i].object == sd->object)
return;
}
/* if we exceed the stack limit, ignore */
if(i >= VOLUME_STACK_SIZE-1)
return;
/* add to the end of the stack */
stack[i].shader = sd->shader;
stack[i].object = sd->object;
stack[i+1].shader = SHADER_NO_ID;
}
}
CCL_NAMESPACE_END