blender/source/gameengine/Ketsji/KX_PolyProxy.cpp

266 lines
7.2 KiB
C++
Raw Normal View History

BGE patch: KX_GameObject::rayCast() improvements to have X-Ray option, return true face normal and hit polygon information. rayCast(to,from,dist,prop,face,xray,poly): The face paremeter determines the orientation of the normal: 0 or omitted => hit normal is always oriented towards the ray origin (as if you casted the ray from outside) 1 => hit normal is the real face normal (only for mesh object, otherwise face has no effect) The ray has X-Ray capability if xray parameter is 1, otherwise the first object hit (other than self object) stops the ray. The prop and xray parameters interact as follow: prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray. prop off, xray on : idem. prop on, xray off: return closest hit if it matches prop, no hit otherwise. prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray. if poly is 0 or omitted, returns a 3-tuple with object reference, hit point and hit normal or (None,None,None) if no hit. if poly is 1, returns a 4-tuple with in addition a KX_PolyProxy as 4th element. The KX_PolyProxy object holds information on the polygon hit by the ray: the index of the vertex forming the poylgon, material, etc. Attributes (read-only): matname: The name of polygon material, empty if no material. material: The material of the polygon texture: The texture name of the polygon. matid: The material index of the polygon, use this to retrieve vertex proxy from mesh proxy v1: vertex index of the first vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v2: vertex index of the second vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v3: vertex index of the third vertex of the polygon, use this to retrieve vertex proxy from mesh proxy v4: vertex index of the fourth vertex of the polygon, 0 if polygon has only 3 vertex use this to retrieve vertex proxy from mesh proxy visible: visible state of the polygon: 1=visible, 0=invisible collide: collide state of the polygon: 1=receives collision, 0=collision free. Methods: getMaterialName(): Returns the polygon material name with MA prefix getMaterial(): Returns the polygon material getTextureName(): Returns the polygon texture name getMaterialIndex(): Returns the material bucket index of the polygon. getNumVertex(): Returns the number of vertex of the polygon. isVisible(): Returns whether the polygon is visible or not isCollider(): Returns whether the polygon is receives collision or not getVertexIndex(vertex): Returns the mesh vertex index of a polygon vertex getMesh(): Returns a mesh proxy New methods of KX_MeshProxy have been implemented to retrieve KX_PolyProxy objects: getNumPolygons(): Returns the number of polygon in the mesh. getPolygon(index): Gets the specified polygon from the mesh. More details in PyDoc.
2008-08-27 19:34:19 +00:00
/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "KX_PolyProxy.h"
#include "KX_MeshProxy.h"
#include "RAS_MeshObject.h"
#include "KX_BlenderMaterial.h"
#include "KX_PolygonMaterial.h"
#include "KX_PyMath.h"
PyTypeObject KX_PolyProxy::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_PolyProxy",
sizeof(KX_PolyProxy),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_PolyProxy::Parents[] = {
&KX_PolyProxy::Type,
&SCA_IObject::Type,
&CValue::Type,
NULL
};
PyMethodDef KX_PolyProxy::Methods[] = {
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,getMaterialIndex),
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,getNumVertex),
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,isVisible),
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,isCollider),
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,getMaterialName),
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,getTextureName),
KX_PYMETHODTABLE(KX_PolyProxy,getVertexIndex),
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,getMesh),
KX_PYMETHODTABLE_NOARG(KX_PolyProxy,getMaterial),
{NULL,NULL} //Sentinel
};
PyObject*
KX_PolyProxy::_getattr(const STR_String& attr)
{
if (attr == "matname")
{
return PyString_FromString(m_polygon->GetMaterial()->GetPolyMaterial()->GetMaterialName());
}
if (attr == "texture")
{
return PyString_FromString(m_polygon->GetMaterial()->GetPolyMaterial()->GetTextureName());
}
if (attr == "material")
{
RAS_IPolyMaterial *polymat = m_polygon->GetMaterial()->GetPolyMaterial();
if(polymat->GetFlag() & RAS_BLENDERMAT)
{
KX_BlenderMaterial* mat = static_cast<KX_BlenderMaterial*>(polymat);
Py_INCREF(mat);
return mat;
}
else
{
KX_PolygonMaterial* mat = static_cast<KX_PolygonMaterial*>(polymat);
Py_INCREF(mat);
return mat;
}
}
if (attr == "matid")
{
// we'll have to scan through the material bucket of the mes and compare with
// the one of the polygon
RAS_MaterialBucket* polyBucket = m_polygon->GetMaterial();
unsigned int matid;
for (matid=0; matid<m_mesh->NumMaterials(); matid++)
{
RAS_MaterialBucket* meshBucket = m_mesh->GetMaterialBucket(matid);
if (meshBucket == polyBucket)
// found it
break;
}
return PyInt_FromLong(matid);
}
if (attr == "v1")
{
return PyInt_FromLong(m_polygon->GetVertexIndexBase().m_indexarray[0]);
}
if (attr == "v2")
{
return PyInt_FromLong(m_polygon->GetVertexIndexBase().m_indexarray[1]);
}
if (attr == "v3")
{
return PyInt_FromLong(m_polygon->GetVertexIndexBase().m_indexarray[2]);
}
if (attr == "v4")
{
return PyInt_FromLong(((m_polygon->VertexCount()>3)?m_polygon->GetVertexIndexBase().m_indexarray[3]:0));
}
if (attr == "visible")
{
return PyInt_FromLong(m_polygon->IsVisible());
}
if (attr == "collide")
{
return PyInt_FromLong(m_polygon->IsCollider());
}
_getattr_up(SCA_IObject);
}
KX_PolyProxy::KX_PolyProxy(const RAS_MeshObject*mesh, RAS_Polygon* polygon)
: m_mesh((RAS_MeshObject*)mesh),
m_polygon(polygon)
{
}
KX_PolyProxy::~KX_PolyProxy()
{
}
// stuff for cvalue related things
CValue* KX_PolyProxy::Calc(VALUE_OPERATOR, CValue *) { return NULL;}
CValue* KX_PolyProxy::CalcFinal(VALUE_DATA_TYPE, VALUE_OPERATOR, CValue *) { return NULL;}
STR_String sPolyName="polygone";
const STR_String & KX_PolyProxy::GetText() {return sPolyName;};
float KX_PolyProxy::GetNumber() { return -1;}
STR_String KX_PolyProxy::GetName() { return sPolyName;}
void KX_PolyProxy::SetName(STR_String) { };
CValue* KX_PolyProxy::GetReplica() { return NULL;}
void KX_PolyProxy::ReplicaSetName(STR_String) {};
// stuff for python integration
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, getMaterialIndex,
"getMaterialIndex() : return the material index of the polygon in the mesh\n")
{
RAS_MaterialBucket* polyBucket = m_polygon->GetMaterial();
unsigned int matid;
for (matid=0; matid<m_mesh->NumMaterials(); matid++)
{
RAS_MaterialBucket* meshBucket = m_mesh->GetMaterialBucket(matid);
if (meshBucket == polyBucket)
// found it
break;
}
return PyInt_FromLong(matid);
}
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, getNumVertex,
"getNumVertex() : returns the number of vertex of the polygon, 3 or 4\n")
{
return PyInt_FromLong(m_polygon->VertexCount());
}
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, isVisible,
"isVisible() : returns whether the polygon is visible or not\n")
{
return PyInt_FromLong(m_polygon->IsVisible());
}
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, isCollider,
"isCollider() : returns whether the polygon is receives collision or not\n")
{
return PyInt_FromLong(m_polygon->IsCollider());
}
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, getMaterialName,
"getMaterialName() : returns the polygon material name, \"NoMaterial\" if no material\n")
{
return PyString_FromString(m_polygon->GetMaterial()->GetPolyMaterial()->GetMaterialName());
}
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, getTextureName,
"getTexturelName() : returns the polygon texture name, \"NULL\" if no texture\n")
{
return PyString_FromString(m_polygon->GetMaterial()->GetPolyMaterial()->GetTextureName());
}
KX_PYMETHODDEF_DOC(KX_PolyProxy, getVertexIndex,
"getVertexIndex(vertex) : returns the mesh vertex index of a polygon vertex\n"
"vertex: index of the vertex in the polygon: 0->3\n"
"return value can be used to retrieve the vertex details through mesh proxy\n"
"Note: getVertexIndex(3) on a triangle polygon returns 0\n")
{
int index;
if (!PyArg_ParseTuple(args,"i",&index))
{
return NULL;
}
if (index < 0 || index > 3)
{
PyErr_SetString(PyExc_AttributeError, "Valid range for index is 0-3");
return NULL;
}
if (index < m_polygon->VertexCount())
{
return PyInt_FromLong(m_polygon->GetVertexIndexBase().m_indexarray[index]);
}
return PyInt_FromLong(0);
}
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, getMesh,
"getMesh() : returns a mesh proxy\n")
{
KX_MeshProxy* meshproxy = new KX_MeshProxy((RAS_MeshObject*)m_mesh);
return meshproxy;
}
KX_PYMETHODDEF_DOC_NOARG(KX_PolyProxy, getMaterial,
"getMaterial() : returns a material\n")
{
RAS_IPolyMaterial *polymat = m_polygon->GetMaterial()->GetPolyMaterial();
if(polymat->GetFlag() & RAS_BLENDERMAT)
{
KX_BlenderMaterial* mat = static_cast<KX_BlenderMaterial*>(polymat);
Py_INCREF(mat);
return mat;
}
else
{
KX_PolygonMaterial* mat = static_cast<KX_PolygonMaterial*>(polymat);
Py_INCREF(mat);
return mat;
}
}