blender/intern/cycles/kernel/kernel_path.h

823 lines
26 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef __OSL__
# include "osl_shader.h"
#endif
#include "kernel_random.h"
#include "kernel_projection.h"
#include "kernel_montecarlo.h"
#include "kernel_differential.h"
#include "kernel_camera.h"
#include "geom/geom.h"
#include "bvh/bvh.h"
#include "kernel_accumulate.h"
#include "kernel_shader.h"
#include "kernel_light.h"
#include "kernel_passes.h"
#ifdef __SUBSURFACE__
# include "kernel_subsurface.h"
#endif
#ifdef __VOLUME__
# include "kernel_volume.h"
#endif
#include "kernel_path_state.h"
#include "kernel_shadow.h"
#include "kernel_emission.h"
2015-05-09 14:34:30 +00:00
#include "kernel_path_common.h"
#include "kernel_path_surface.h"
#include "kernel_path_volume.h"
#include "kernel_path_subsurface.h"
#ifdef __KERNEL_DEBUG__
# include "kernel_debug.h"
#endif
CCL_NAMESPACE_BEGIN
ccl_device_noinline void kernel_path_ao(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
PathRadiance *L,
PathState *state,
RNG *rng,
float3 throughput,
float3 ao_alpha)
{
/* todo: solve correlation */
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float ao_factor = kernel_data.background.ao_factor;
float3 ao_N;
float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
float3 ao_D;
float ao_pdf;
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
2017-02-16 11:24:13 +00:00
if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
2017-02-16 11:24:13 +00:00
light_ray.P = ray_offset(sd->P, sd->Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
2017-02-16 11:24:13 +00:00
light_ray.time = sd->time;
#endif /* __OBJECT_MOTION__ */
2017-02-16 11:24:13 +00:00
light_ray.dP = sd->dP;
light_ray.dD = differential3_zero();
if(!shadow_blocked(kg, emission_sd, state, &light_ray, &ao_shadow)) {
path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
}
else {
path_radiance_accum_total_ao(L, throughput, ao_bsdf);
}
}
}
ccl_device void kernel_path_indirect(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
RNG *rng,
Ray *ray,
float3 throughput,
int num_samples,
PathState *state,
PathRadiance *L)
{
/* path iteration */
for(;;) {
/* intersect scene */
Intersection isect;
uint visibility = path_state_ray_visibility(kg, state);
if(state->bounce > kernel_data.integrator.ao_bounces) {
visibility = PATH_RAY_SHADOW;
ray->t = kernel_data.background.ao_distance;
}
bool hit = scene_intersect(kg,
*ray,
visibility,
&isect,
NULL,
0.0f, 0.0f);
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray->P - state->ray_t*ray->D;
state->ray_t += isect.t;
light_ray.D = ray->D;
light_ray.t = state->ray_t;
light_ray.time = ray->time;
light_ray.dD = ray->dD;
light_ray.dP = ray->dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, emission_sd, state, &light_ray, &emission)) {
path_radiance_accum_emission(L,
throughput,
emission,
state->bounce);
}
}
#endif /* __LAMP_MIS__ */
#ifdef __VOLUME__
Fix emissive volumes generates unexpected fireflies around intersections Discard the whole volume stack on the last bounce (but keep world volume if present). Volumes are expected to be closed manifol meshes, meaning if ray entered the volume there should be an intersection event of ray exisintg the volume. Case when ray hit nothing and there are still non-world volumes in the stack can happen in either of cases. 1. Mesh is not closed manifold. Such configurations are not really supported anyway and should not be used. Previous code would have consider the infinite length of the ray to sample across, so render result wasn't really correct anyway. 2. Exit intersection is more far away than the camera far clip distance. This case also will behave differently now, but previously it wasn't really correct either, so it's not like we're breaking something which was working as expected. 3. We missed exit event due to intersection precision issues. This is exact the case which this patch fixes and avoid fireflies. 4. Volume has Camera only visibility (all the rest visibility is set to off) This is what could be considered a regression but could be solved quite easily by checking volume stack's objects flags and keep entries which doesn't have Volume Scatter visibility (or even better: ensure Volume Scatter visibility for objects with volume closure), Fixes T46108: Cycles - Overlapping emissive volumes generates unexpected bright hotspots around the intersection Also fixes fireflies appearing on the edges of cube with emissive volue. Reviewers: juicyfruit, brecht Reviewed By: brecht Maniphest Tasks: T46108 Differential Revision: https://developer.blender.org/D2212
2016-09-08 15:07:58 +00:00
/* Sanitize volume stack. */
if(!hit) {
kernel_volume_clean_stack(kg, state->volume_stack);
}
/* volume attenuation, emission, scatter */
if(state->volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = *ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous =
volume_stack_is_heterogeneous(kg,
state->volume_stack);
# ifdef __VOLUME_DECOUPLED__
int sampling_method =
volume_stack_sampling_method(kg,
state->volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, false, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
shader_setup_from_volume(kg,
sd,
&volume_ray);
kernel_volume_decoupled_record(kg,
state,
&volume_ray,
sd,
&volume_segment,
heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION) {
path_radiance_accum_emission(L,
throughput,
volume_segment.accum_emission,
state->bounce);
}
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
int all = kernel_data.integrator.sample_all_lights_indirect;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg,
rng,
sd,
emission_sd,
throughput,
state,
L,
all,
&volume_ray,
&volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
state,
&volume_ray,
sd,
&throughput,
rphase,
rscatter,
&volume_segment,
NULL,
true);
}
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg,
rng,
sd,
&throughput,
state,
L,
ray))
{
continue;
}
else {
break;
}
}
else {
throughput *= volume_segment.accum_transmittance;
}
}
else
# endif /* __VOLUME_DECOUPLED__ */
{
/* integrate along volume segment with distance sampling */
VolumeIntegrateResult result = kernel_volume_integrate(
kg, state, sd, &volume_ray, L, &throughput, rng, heterogeneous);
# ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg,
rng,
sd,
emission_sd,
throughput,
state,
L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg,
rng,
sd,
&throughput,
state,
L,
ray))
{
continue;
}
else {
break;
}
}
# endif /* __VOLUME_SCATTER__ */
}
}
#endif /* __VOLUME__ */
if(!hit) {
#ifdef __BACKGROUND__
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
/* sample background shader */
float3 L_background = indirect_background(kg, emission_sd, state, ray);
path_radiance_accum_background(L,
state,
throughput,
L_background);
#endif /* __BACKGROUND__ */
break;
}
else if(state->bounce > kernel_data.integrator.ao_bounces) {
break;
}
/* setup shading */
shader_setup_from_ray(kg,
sd,
&isect,
ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_INDIRECT);
#ifdef __BRANCHED_PATH__
shader_merge_closures(sd);
#endif /* __BRANCHED_PATH__ */
#ifdef __SHADOW_TRICKS__
if(!(sd->object_flag & SD_OBJECT_SHADOW_CATCHER)) {
state->flag &= ~PATH_RAY_SHADOW_CATCHER_ONLY;
}
#endif /* __SHADOW_TRICKS__ */
/* blurring of bsdf after bounces, for rays that have a small likelihood
* of following this particular path (diffuse, rough glossy) */
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
if(blur_pdf < 1.0f) {
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
shader_bsdf_blur(kg, sd, blur_roughness);
}
}
#ifdef __EMISSION__
/* emission */
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg,
sd,
isect.t,
state->flag,
state->ray_pdf);
path_radiance_accum_emission(L, throughput, emission, state->bounce);
}
#endif /* __EMISSION__ */
/* path termination. this is a strange place to put the termination, it's
2012-06-09 17:22:52 +00:00
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability =
path_state_terminate_probability(kg,
state,
throughput*num_samples);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D_for_decision(kg, rng, state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd->flag & SD_AO)) {
kernel_path_ao(kg, sd, emission_sd, L, state, rng, throughput, make_float3(0.0f, 0.0f, 0.0f));
}
#endif /* __AO__ */
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object, replacing
* the closures with a diffuse BSDF */
if(sd->flag & SD_BSSRDF) {
float bssrdf_probability;
ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);
/* modify throughput for picking bssrdf or bsdf */
throughput *= bssrdf_probability;
/* do bssrdf scatter step if we picked a bssrdf closure */
if(sc) {
uint lcg_state = lcg_state_init(rng, state->rng_offset, state->sample, 0x68bc21eb);
float bssrdf_u, bssrdf_v;
path_state_rng_2D(kg,
rng,
state,
PRNG_BSDF_U,
&bssrdf_u, &bssrdf_v);
subsurface_scatter_step(kg,
sd,
state,
state->flag,
sc,
&lcg_state,
bssrdf_u, bssrdf_v,
false);
}
}
#endif /* __SUBSURFACE__ */
#if defined(__EMISSION__) && defined(__BRANCHED_PATH__)
if(kernel_data.integrator.use_direct_light) {
int all = (kernel_data.integrator.sample_all_lights_indirect) ||
(state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(kg,
rng,
sd,
emission_sd,
state,
throughput,
1.0f,
L,
all);
}
#endif /* defined(__EMISSION__) && defined(__BRANCHED_PATH__) */
if(!kernel_path_surface_bounce(kg, rng, sd, &throughput, state, L, ray))
break;
}
}
ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
RNG *rng,
int sample,
Ray ray,
ccl_global float *buffer)
{
/* initialize */
PathRadiance L;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
float L_transparent = 0.0f;
path_radiance_init(&L, kernel_data.film.use_light_pass);
/* shader data memory used for both volumes and surfaces, saves stack space */
ShaderData sd;
/* shader data used by emission, shadows, volume stacks */
ShaderData emission_sd;
PathState state;
path_state_init(kg, &emission_sd, &state, rng, sample, &ray);
#ifdef __KERNEL_DEBUG__
DebugData debug_data;
debug_data_init(&debug_data);
#endif /* __KERNEL_DEBUG__ */
#ifdef __SUBSURFACE__
SubsurfaceIndirectRays ss_indirect;
kernel_path_subsurface_init_indirect(&ss_indirect);
for(;;) {
#endif /* __SUBSURFACE__ */
/* path iteration */
for(;;) {
/* intersect scene */
Intersection isect;
uint visibility = path_state_ray_visibility(kg, &state);
#ifdef __HAIR__
float difl = 0.0f, extmax = 0.0f;
uint lcg_state = 0;
if(kernel_data.bvh.have_curves) {
if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
float3 pixdiff = ray.dD.dx + ray.dD.dy;
/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
}
extmax = kernel_data.curve.maximum_width;
lcg_state = lcg_state_init(rng, state.rng_offset, state.sample, 0x51633e2d);
}
if(state.bounce > kernel_data.integrator.ao_bounces) {
visibility = PATH_RAY_SHADOW;
ray.t = kernel_data.background.ao_distance;
}
bool hit = scene_intersect(kg, ray, visibility, &isect, &lcg_state, difl, extmax);
#else
bool hit = scene_intersect(kg, ray, visibility, &isect, NULL, 0.0f, 0.0f);
#endif /* __HAIR__ */
#ifdef __KERNEL_DEBUG__
if(state.flag & PATH_RAY_CAMERA) {
debug_data.num_bvh_traversed_nodes += isect.num_traversed_nodes;
debug_data.num_bvh_traversed_instances += isect.num_traversed_instances;
debug_data.num_bvh_intersections += isect.num_intersections;
}
debug_data.num_ray_bounces++;
#endif /* __KERNEL_DEBUG__ */
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray.P - state.ray_t*ray.D;
state.ray_t += isect.t;
light_ray.D = ray.D;
light_ray.t = state.ray_t;
light_ray.time = ray.time;
light_ray.dD = ray.dD;
light_ray.dP = ray.dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, &emission_sd, &state, &light_ray, &emission))
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
}
#endif /* __LAMP_MIS__ */
#ifdef __VOLUME__
Fix emissive volumes generates unexpected fireflies around intersections Discard the whole volume stack on the last bounce (but keep world volume if present). Volumes are expected to be closed manifol meshes, meaning if ray entered the volume there should be an intersection event of ray exisintg the volume. Case when ray hit nothing and there are still non-world volumes in the stack can happen in either of cases. 1. Mesh is not closed manifold. Such configurations are not really supported anyway and should not be used. Previous code would have consider the infinite length of the ray to sample across, so render result wasn't really correct anyway. 2. Exit intersection is more far away than the camera far clip distance. This case also will behave differently now, but previously it wasn't really correct either, so it's not like we're breaking something which was working as expected. 3. We missed exit event due to intersection precision issues. This is exact the case which this patch fixes and avoid fireflies. 4. Volume has Camera only visibility (all the rest visibility is set to off) This is what could be considered a regression but could be solved quite easily by checking volume stack's objects flags and keep entries which doesn't have Volume Scatter visibility (or even better: ensure Volume Scatter visibility for objects with volume closure), Fixes T46108: Cycles - Overlapping emissive volumes generates unexpected bright hotspots around the intersection Also fixes fireflies appearing on the edges of cube with emissive volue. Reviewers: juicyfruit, brecht Reviewed By: brecht Maniphest Tasks: T46108 Differential Revision: https://developer.blender.org/D2212
2016-09-08 15:07:58 +00:00
/* Sanitize volume stack. */
if(!hit) {
kernel_volume_clean_stack(kg, state.volume_stack);
}
/* volume attenuation, emission, scatter */
if(state.volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
# ifdef __VOLUME_DECOUPLED__
int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
shader_setup_from_volume(kg, &sd, &volume_ray);
kernel_volume_decoupled_record(kg, &state,
&volume_ray, &sd, &volume_segment, heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
int all = false;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg, rng, &sd,
&emission_sd, throughput, &state, &L, all,
&volume_ray, &volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
&state, &volume_ray, &sd, &throughput,
rphase, rscatter, &volume_segment, NULL, true);
}
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
continue;
else
break;
}
else {
throughput *= volume_segment.accum_transmittance;
}
}
else
# endif /* __VOLUME_DECOUPLED__ */
{
/* integrate along volume segment with distance sampling */
VolumeIntegrateResult result = kernel_volume_integrate(
kg, &state, &sd, &volume_ray, &L, &throughput, rng, heterogeneous);
# ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, rng, &sd, &emission_sd, throughput, &state, &L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
continue;
else
break;
}
# endif /* __VOLUME_SCATTER__ */
}
}
#endif /* __VOLUME__ */
if(!hit) {
/* eval background shader if nothing hit */
if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
L_transparent += average(throughput);
#ifdef __PASSES__
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
#endif /* __PASSES__ */
break;
}
#ifdef __BACKGROUND__
/* sample background shader */
float3 L_background = indirect_background(kg, &emission_sd, &state, &ray);
path_radiance_accum_background(&L, &state, throughput, L_background);
#endif /* __BACKGROUND__ */
break;
}
else if(state.bounce > kernel_data.integrator.ao_bounces) {
break;
}
/* setup shading */
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
shader_eval_surface(kg, &sd, rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
#ifdef __SHADOW_TRICKS__
if((sd.object_flag & SD_OBJECT_SHADOW_CATCHER)) {
if(state.flag & PATH_RAY_CAMERA) {
state.flag |= (PATH_RAY_SHADOW_CATCHER | PATH_RAY_SHADOW_CATCHER_ONLY);
state.catcher_object = sd.object;
if(!kernel_data.background.transparent) {
L.shadow_color = indirect_background(kg, &emission_sd, &state, &ray);
}
}
}
else {
state.flag &= ~PATH_RAY_SHADOW_CATCHER_ONLY;
}
#endif /* __SHADOW_TRICKS__ */
/* holdout */
#ifdef __HOLDOUT__
if(((sd.flag & SD_HOLDOUT) ||
(sd.object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
(state.flag & PATH_RAY_CAMERA))
{
if(kernel_data.background.transparent) {
float3 holdout_weight;
if(sd.object_flag & SD_OBJECT_HOLDOUT_MASK) {
holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
}
else {
holdout_weight = shader_holdout_eval(kg, &sd);
}
/* any throughput is ok, should all be identical here */
L_transparent += average(holdout_weight*throughput);
}
if(sd.object_flag & SD_OBJECT_HOLDOUT_MASK) {
break;
}
}
#endif /* __HOLDOUT__ */
/* holdout mask objects do not write data passes */
kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
/* blurring of bsdf after bounces, for rays that have a small likelihood
* of following this particular path (diffuse, rough glossy) */
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
if(blur_pdf < 1.0f) {
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
shader_bsdf_blur(kg, &sd, blur_roughness);
}
}
#ifdef __EMISSION__
/* emission */
if(sd.flag & SD_EMISSION) {
/* todo: is isect.t wrong here for transparent surfaces? */
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
}
#endif /* __EMISSION__ */
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability = path_state_terminate_probability(kg, &state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
kernel_path_ao(kg, &sd, &emission_sd, &L, &state, rng, throughput, shader_bsdf_alpha(kg, &sd));
}
#endif /* __AO__ */
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object, replacing
* the closures with a diffuse BSDF */
if(sd.flag & SD_BSSRDF) {
if(kernel_path_subsurface_scatter(kg,
&sd,
&emission_sd,
&L,
&state,
rng,
&ray,
&throughput,
&ss_indirect))
{
break;
}
}
#endif /* __SUBSURFACE__ */
/* direct lighting */
kernel_path_surface_connect_light(kg, rng, &sd, &emission_sd, throughput, &state, &L);
/* compute direct lighting and next bounce */
if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
break;
}
#ifdef __SUBSURFACE__
kernel_path_subsurface_accum_indirect(&ss_indirect, &L);
/* Trace indirect subsurface rays by restarting the loop. this uses less
* stack memory than invoking kernel_path_indirect.
*/
if(ss_indirect.num_rays) {
kernel_path_subsurface_setup_indirect(kg,
&ss_indirect,
&state,
&ray,
&L,
&throughput);
}
else {
break;
}
}
#endif /* __SUBSURFACE__ */
float3 L_sum;
#ifdef __SHADOW_TRICKS__
if(state.flag & PATH_RAY_SHADOW_CATCHER) {
L_sum = path_radiance_sum_shadowcatcher(kg, &L, &L_transparent);
}
else
#endif /* __SHADOW_TRICKS__ */
{
L_sum = path_radiance_clamp_and_sum(kg, &L);
}
kernel_write_light_passes(kg, buffer, &L, sample);
#ifdef __KERNEL_DEBUG__
kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample);
#endif /* __KERNEL_DEBUG__ */
return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
}
ccl_device void kernel_path_trace(KernelGlobals *kg,
ccl_global float *buffer, ccl_global uint *rng_state,
int sample, int x, int y, int offset, int stride)
{
/* buffer offset */
int index = offset + x + y*stride;
int pass_stride = kernel_data.film.pass_stride;
rng_state += index;
buffer += index*pass_stride;
/* initialize random numbers and ray */
RNG rng;
Ray ray;
kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
/* integrate */
Fisheye Camera for Cycles For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
2012-05-04 16:20:51 +00:00
float4 L;
if(ray.t != 0.0f)
L = kernel_path_integrate(kg, &rng, sample, ray, buffer);
else
L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* accumulate result in output buffer */
kernel_write_pass_float4(buffer, sample, L);
path_rng_end(kg, rng_state, rng);
}
CCL_NAMESPACE_END