blender/intern/cycles/kernel/kernel_path.h

1270 lines
38 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef __OSL__
#include "osl_shader.h"
#endif
#include "kernel_random.h"
#include "kernel_projection.h"
#include "kernel_montecarlo.h"
#include "kernel_differential.h"
#include "kernel_camera.h"
#include "geom/geom.h"
#include "kernel_accumulate.h"
#include "kernel_shader.h"
#include "kernel_light.h"
#include "kernel_passes.h"
#ifdef __SUBSURFACE__
#include "kernel_subsurface.h"
#endif
#ifdef __VOLUME__
#include "kernel_volume.h"
#endif
#include "kernel_path_state.h"
#include "kernel_shadow.h"
#include "kernel_emission.h"
#include "kernel_path_surface.h"
#include "kernel_path_volume.h"
#ifdef __KERNEL_DEBUG__
#include "kernel_debug.h"
#endif
CCL_NAMESPACE_BEGIN
ccl_device void kernel_path_indirect(KernelGlobals *kg, RNG *rng, Ray ray,
float3 throughput, int num_samples, PathState state, PathRadiance *L)
{
/* path iteration */
for(;;) {
/* intersect scene */
Intersection isect;
uint visibility = path_state_ray_visibility(kg, &state);
bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f);
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray.P - state.ray_t*ray.D;
state.ray_t += isect.t;
light_ray.D = ray.D;
light_ray.t = state.ray_t;
light_ray.time = ray.time;
light_ray.dD = ray.dD;
light_ray.dP = ray.dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, &state, &light_ray, &emission))
path_radiance_accum_emission(L, throughput, emission, state.bounce);
}
#endif
#ifdef __VOLUME__
/* volume attenuation, emission, scatter */
if(state.volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
#ifdef __VOLUME_DECOUPLED__
int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, false, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
ShaderData volume_sd;
shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
kernel_volume_decoupled_record(kg, &state,
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(L, throughput, volume_segment.accum_emission, state.bounce);
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
bool all = kernel_data.integrator.sample_all_lights_indirect;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
throughput, &state, L, all, &volume_ray, &volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
&state, &volume_ray, &volume_sd, &throughput,
rphase, rscatter, &volume_segment, NULL, true);
}
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, L, &ray))
continue;
else
break;
}
else {
throughput *= volume_segment.accum_transmittance;
}
}
else
#endif
{
/* integrate along volume segment with distance sampling */
ShaderData volume_sd;
VolumeIntegrateResult result = kernel_volume_integrate(
kg, &state, &volume_sd, &volume_ray, L, &throughput, rng, heterogeneous);
#ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, L, &ray))
continue;
else
break;
}
#endif
}
}
#endif
if(!hit) {
#ifdef __BACKGROUND__
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
/* sample background shader */
float3 L_background = indirect_background(kg, &state, &ray);
path_radiance_accum_background(L, throughput, L_background, state.bounce);
#endif
break;
}
/* setup shading */
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_INDIRECT);
#ifdef __BRANCHED_PATH__
shader_merge_closures(&sd);
#endif
/* blurring of bsdf after bounces, for rays that have a small likelihood
* of following this particular path (diffuse, rough glossy) */
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
if(blur_pdf < 1.0f) {
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
shader_bsdf_blur(kg, &sd, blur_roughness);
}
}
#ifdef __EMISSION__
/* emission */
if(sd.flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
path_radiance_accum_emission(L, throughput, emission, state.bounce);
}
#endif
/* path termination. this is a strange place to put the termination, it's
2012-06-09 17:22:52 +00:00
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability = path_state_terminate_probability(kg, &state, throughput*num_samples);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, rng, &state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float ao_factor = kernel_data.background.ao_factor;
float3 ao_N;
float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N);
float3 ao_D;
float ao_pdf;
float3 ao_alpha = make_float3(0.0f, 0.0f, 0.0f);
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
light_ray.P = ray_offset(sd.P, sd.Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
light_ray.time = sd.time;
#endif
light_ray.dP = sd.dP;
light_ray.dD = differential3_zero();
if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state.bounce);
}
}
#endif
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object, replacing
* the closures with a diffuse BSDF */
if(sd.flag & SD_BSSRDF) {
float bssrdf_probability;
ShaderClosure *sc = subsurface_scatter_pick_closure(kg, &sd, &bssrdf_probability);
/* modify throughput for picking bssrdf or bsdf */
throughput *= bssrdf_probability;
/* do bssrdf scatter step if we picked a bssrdf closure */
if(sc) {
uint lcg_state = lcg_state_init(rng, &state, 0x68bc21eb);
float bssrdf_u, bssrdf_v;
path_state_rng_2D(kg, rng, &state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
subsurface_scatter_step(kg, &sd, state.flag, sc, &lcg_state, bssrdf_u, bssrdf_v, false);
state.flag |= PATH_RAY_BSSRDF_ANCESTOR;
}
}
#endif
#if defined(__EMISSION__) && defined(__BRANCHED_PATH__)
if(kernel_data.integrator.use_direct_light) {
bool all = kernel_data.integrator.sample_all_lights_indirect;
kernel_branched_path_surface_connect_light(kg, rng, &sd, &state, throughput, 1.0f, L, all);
}
#endif
if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, L, &ray))
break;
}
}
ccl_device void kernel_path_ao(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, float3 throughput)
{
/* todo: solve correlation */
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float ao_factor = kernel_data.background.ao_factor;
float3 ao_N;
float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
float3 ao_D;
float ao_pdf;
float3 ao_alpha = shader_bsdf_alpha(kg, sd);
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
light_ray.P = ray_offset(sd->P, sd->Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
#endif
light_ray.dP = sd->dP;
light_ray.dD = differential3_zero();
if(!shadow_blocked(kg, state, &light_ray, &ao_shadow))
path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
}
}
ccl_device void kernel_branched_path_ao(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, float3 throughput)
{
int num_samples = kernel_data.integrator.ao_samples;
float num_samples_inv = 1.0f/num_samples;
float ao_factor = kernel_data.background.ao_factor;
float3 ao_N;
float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
float3 ao_alpha = shader_bsdf_alpha(kg, sd);
for(int j = 0; j < num_samples; j++) {
float bsdf_u, bsdf_v;
path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float3 ao_D;
float ao_pdf;
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
light_ray.P = ray_offset(sd->P, sd->Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
#endif
light_ray.dP = sd->dP;
light_ray.dD = differential3_zero();
if(!shadow_blocked(kg, state, &light_ray, &ao_shadow))
path_radiance_accum_ao(L, throughput*num_samples_inv, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
}
}
}
#ifdef __SUBSURFACE__
2014-09-26 00:04:18 +00:00
#ifdef __VOLUME__
ccl_device void kernel_path_subsurface_update_volume_stack(KernelGlobals *kg,
Ray *ray,
VolumeStack *stack)
{
kernel_assert(kernel_data.integrator.use_volumes);
Ray volume_ray = *ray;
Intersection isect;
int step = 0;
while(step < VOLUME_STACK_SIZE &&
scene_intersect_volume(kg, &volume_ray, &isect))
{
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &volume_ray, 0, 0);
kernel_volume_stack_enter_exit(kg, &sd, stack);
/* Move ray forward. */
volume_ray.P = ray_offset(sd.P, -sd.Ng);
volume_ray.t -= sd.ray_length;
++step;
}
}
2014-09-26 00:04:18 +00:00
#endif
ccl_device bool kernel_path_subsurface_scatter(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, Ray *ray, float3 *throughput)
{
float bssrdf_probability;
ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);
/* modify throughput for picking bssrdf or bsdf */
*throughput *= bssrdf_probability;
/* do bssrdf scatter step if we picked a bssrdf closure */
if(sc) {
uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb);
ShaderData bssrdf_sd[BSSRDF_MAX_HITS];
float bssrdf_u, bssrdf_v;
path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
int num_hits = subsurface_scatter_multi_step(kg, sd, bssrdf_sd, state->flag, sc, &lcg_state, bssrdf_u, bssrdf_v, false);
#ifdef __VOLUME__
Ray volume_ray = *ray;
bool need_update_volume_stack = kernel_data.integrator.use_volumes &&
sd->flag & SD_OBJECT_INTERSECTS_VOLUME;
#endif
/* compute lighting with the BSDF closure */
for(int hit = 0; hit < num_hits; hit++) {
float3 tp = *throughput;
PathState hit_state = *state;
Ray hit_ray = *ray;
hit_state.flag |= PATH_RAY_BSSRDF_ANCESTOR;
hit_state.rng_offset += PRNG_BOUNCE_NUM;
kernel_path_surface_connect_light(kg, rng, &bssrdf_sd[hit], tp, state, L);
if(kernel_path_surface_bounce(kg, rng, &bssrdf_sd[hit], &tp, &hit_state, L, &hit_ray)) {
#ifdef __LAMP_MIS__
hit_state.ray_t = 0.0f;
#endif
#ifdef __VOLUME__
if(need_update_volume_stack) {
/* Setup ray from previous surface point to the new one. */
volume_ray.D = normalize_len(hit_ray.P - volume_ray.P,
&volume_ray.t);
kernel_path_subsurface_update_volume_stack(
kg,
&volume_ray,
hit_state.volume_stack);
/* Move volume ray forward. */
volume_ray.P = hit_ray.P;
}
#endif
kernel_path_indirect(kg, rng, hit_ray, tp, state->num_samples, hit_state, L);
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(L);
path_radiance_reset_indirect(L);
}
}
return true;
}
return false;
}
#endif
ccl_device float4 kernel_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, ccl_global float *buffer)
{
/* initialize */
PathRadiance L;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
float L_transparent = 0.0f;
path_radiance_init(&L, kernel_data.film.use_light_pass);
PathState state;
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 17:49:59 +00:00
path_state_init(kg, &state, rng, sample, &ray);
#ifdef __KERNEL_DEBUG__
DebugData debug_data;
debug_data_init(&debug_data);
#endif
/* path iteration */
for(;;) {
/* intersect scene */
Intersection isect;
uint visibility = path_state_ray_visibility(kg, &state);
#ifdef __HAIR__
float difl = 0.0f, extmax = 0.0f;
uint lcg_state = 0;
if(kernel_data.bvh.have_curves) {
if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
float3 pixdiff = ray.dD.dx + ray.dD.dy;
/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
}
extmax = kernel_data.curve.maximum_width;
lcg_state = lcg_state_init(rng, &state, 0x51633e2d);
}
bool hit = scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax);
#else
bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f);
#endif
#ifdef __KERNEL_DEBUG__
if(state.flag & PATH_RAY_CAMERA) {
debug_data.num_bvh_traversal_steps += isect.num_traversal_steps;
}
#endif
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray.P - state.ray_t*ray.D;
state.ray_t += isect.t;
light_ray.D = ray.D;
light_ray.t = state.ray_t;
light_ray.time = ray.time;
light_ray.dD = ray.dD;
light_ray.dP = ray.dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, &state, &light_ray, &emission))
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
}
#endif
#ifdef __VOLUME__
/* volume attenuation, emission, scatter */
if(state.volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
#ifdef __VOLUME_DECOUPLED__
int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
ShaderData volume_sd;
shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
kernel_volume_decoupled_record(kg, &state,
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
bool all = false;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
throughput, &state, &L, all, &volume_ray, &volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
&state, &volume_ray, &volume_sd, &throughput,
rphase, rscatter, &volume_segment, NULL, true);
}
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray))
continue;
else
break;
}
else {
throughput *= volume_segment.accum_transmittance;
}
}
else
#endif
{
/* integrate along volume segment with distance sampling */
ShaderData volume_sd;
VolumeIntegrateResult result = kernel_volume_integrate(
kg, &state, &volume_sd, &volume_ray, &L, &throughput, rng, heterogeneous);
#ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, &L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray))
continue;
else
break;
}
#endif
}
}
#endif
if(!hit) {
/* eval background shader if nothing hit */
if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
L_transparent += average(throughput);
#ifdef __PASSES__
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
#endif
break;
}
#ifdef __BACKGROUND__
/* sample background shader */
float3 L_background = indirect_background(kg, &state, &ray);
path_radiance_accum_background(&L, throughput, L_background, state.bounce);
#endif
break;
}
/* setup shading */
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce);
float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
/* holdout */
#ifdef __HOLDOUT__
if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) {
if(kernel_data.background.transparent) {
float3 holdout_weight;
if(sd.flag & SD_HOLDOUT_MASK)
holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
else
holdout_weight = shader_holdout_eval(kg, &sd);
/* any throughput is ok, should all be identical here */
L_transparent += average(holdout_weight*throughput);
}
if(sd.flag & SD_HOLDOUT_MASK)
break;
}
#endif
/* holdout mask objects do not write data passes */
kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
/* blurring of bsdf after bounces, for rays that have a small likelihood
* of following this particular path (diffuse, rough glossy) */
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
if(blur_pdf < 1.0f) {
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
shader_bsdf_blur(kg, &sd, blur_roughness);
}
}
#ifdef __EMISSION__
/* emission */
if(sd.flag & SD_EMISSION) {
/* todo: is isect.t wrong here for transparent surfaces? */
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
}
#endif
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability = path_state_terminate_probability(kg, &state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
kernel_path_ao(kg, &sd, &L, &state, rng, throughput);
}
#endif
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object, replacing
* the closures with a diffuse BSDF */
if(sd.flag & SD_BSSRDF) {
if(kernel_path_subsurface_scatter(kg, &sd, &L, &state, rng, &ray, &throughput))
break;
}
#endif
/* direct lighting */
kernel_path_surface_connect_light(kg, rng, &sd, throughput, &state, &L);
/* compute direct lighting and next bounce */
if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
break;
}
float3 L_sum = path_radiance_clamp_and_sum(kg, &L);
kernel_write_light_passes(kg, buffer, &L, sample);
#ifdef __KERNEL_DEBUG__
kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample);
#endif
return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
}
#ifdef __BRANCHED_PATH__
/* branched path tracing: bounce off surface and integrate indirect light */
ccl_device_noinline void kernel_branched_path_surface_indirect_light(KernelGlobals *kg,
RNG *rng, ShaderData *sd, float3 throughput, float num_samples_adjust,
PathState *state, PathRadiance *L)
{
for(int i = 0; i< sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSDF(sc->type))
continue;
/* transparency is not handled here, but in outer loop */
if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID)
continue;
int num_samples;
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
num_samples = kernel_data.integrator.diffuse_samples;
else if(CLOSURE_IS_BSDF_BSSRDF(sc->type))
num_samples = 1;
else if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
num_samples = kernel_data.integrator.glossy_samples;
else
num_samples = kernel_data.integrator.transmission_samples;
num_samples = ceil_to_int(num_samples_adjust*num_samples);
float num_samples_inv = num_samples_adjust/num_samples;
RNG bsdf_rng = cmj_hash(*rng, i);
for(int j = 0; j < num_samples; j++) {
PathState ps = *state;
float3 tp = throughput;
Ray bsdf_ray;
if(!kernel_branched_path_surface_bounce(kg, &bsdf_rng, sd, sc, j, num_samples, &tp, &ps, L, &bsdf_ray))
continue;
kernel_path_indirect(kg, rng, bsdf_ray, tp*num_samples_inv, num_samples, ps, L);
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(L);
path_radiance_reset_indirect(L);
}
}
}
#ifdef __SUBSURFACE__
ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
ShaderData *sd,
PathRadiance *L,
PathState *state,
RNG *rng,
Ray *ray,
float3 throughput)
{
for(int i = 0; i< sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSSRDF(sc->type))
continue;
/* set up random number generator */
uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb);
int num_samples = kernel_data.integrator.subsurface_samples;
float num_samples_inv = 1.0f/num_samples;
RNG bssrdf_rng = cmj_hash(*rng, i);
state->flag |= PATH_RAY_BSSRDF_ANCESTOR;
/* do subsurface scatter step with copy of shader data, this will
* replace the BSSRDF with a diffuse BSDF closure */
for(int j = 0; j < num_samples; j++) {
ShaderData bssrdf_sd[BSSRDF_MAX_HITS];
float bssrdf_u, bssrdf_v;
path_branched_rng_2D(kg, &bssrdf_rng, state, j, num_samples, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
int num_hits = subsurface_scatter_multi_step(kg, sd, bssrdf_sd, state->flag, sc, &lcg_state, bssrdf_u, bssrdf_v, true);
2014-09-26 00:04:18 +00:00
#ifdef __VOLUME__
Ray volume_ray = *ray;
bool need_update_volume_stack = kernel_data.integrator.use_volumes &&
sd->flag & SD_OBJECT_INTERSECTS_VOLUME;
2014-09-26 00:04:18 +00:00
#endif
/* compute lighting with the BSDF closure */
for(int hit = 0; hit < num_hits; hit++) {
PathState hit_state = *state;
path_state_branch(&hit_state, j, num_samples);
#ifdef __VOLUME__
if(need_update_volume_stack) {
/* Setup ray from previous surface point to the new one. */
float3 P = ray_offset(bssrdf_sd[hit].P, -bssrdf_sd[hit].Ng);
volume_ray.D = normalize_len(P - volume_ray.P,
&volume_ray.t);
kernel_path_subsurface_update_volume_stack(
kg,
&volume_ray,
hit_state.volume_stack);
/* Move volume ray forward. */
volume_ray.P = P;
}
#endif
#if defined(__EMISSION__) && defined(__BRANCHED_PATH__)
/* direct light */
if(kernel_data.integrator.use_direct_light) {
bool all = kernel_data.integrator.sample_all_lights_direct;
kernel_branched_path_surface_connect_light(kg, rng,
&bssrdf_sd[hit], &hit_state, throughput, num_samples_inv, L, all);
}
#endif
/* indirect light */
kernel_branched_path_surface_indirect_light(kg, rng,
&bssrdf_sd[hit], throughput, num_samples_inv,
&hit_state, L);
}
}
state->flag &= ~PATH_RAY_BSSRDF_ANCESTOR;
}
}
#endif
ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, ccl_global float *buffer)
{
/* initialize */
PathRadiance L;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
float L_transparent = 0.0f;
path_radiance_init(&L, kernel_data.film.use_light_pass);
PathState state;
Cycles: Add support for cameras inside volume Basically the title says it all, volume stack initialization now is aware that camera might be inside of the volume. This gives quite noticeable render time regressions in cases camera is in the volume (didn't measure them yet) because this requires quite a few of ray-casting per camera ray in order to check which objects we're inside. Not quite sure if this might be optimized. But the good thing is that we can do quite a good job on detecting whether camera is outside of any of the volumes and in this case there should be no time penalty at all (apart from some extra checks during the sync state). For now we're only doing rather simple AABB checks between the viewplane and volume objects. This could give some false-positives, but this should be good starting point. Need to mention panoramic cameras here, for them it's only check for whether there are volumes in the scene, which would lead to speed regressions even if the camera is outside of the volumes. Would need to figure out proper check for such cameras. There are still quite a few of TODOs in the code, but the patch is good enough to start playing around with it checking whether there are some obvious mistakes somewhere. Currently the feature is only available in the Experimental feature sey, need to solve some of the TODOs and look into making things faster before considering the feature is ready for the official feature set. This would still likely happen in current release cycle. Reviewers: brecht, juicyfruit, dingto Differential Revision: https://developer.blender.org/D794
2014-09-16 17:49:59 +00:00
path_state_init(kg, &state, rng, sample, &ray);
#ifdef __KERNEL_DEBUG__
DebugData debug_data;
debug_data_init(&debug_data);
#endif
for(;;) {
/* intersect scene */
Intersection isect;
uint visibility = path_state_ray_visibility(kg, &state);
#ifdef __HAIR__
float difl = 0.0f, extmax = 0.0f;
uint lcg_state = 0;
if(kernel_data.bvh.have_curves) {
if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
float3 pixdiff = ray.dD.dx + ray.dD.dy;
/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
}
extmax = kernel_data.curve.maximum_width;
lcg_state = lcg_state_init(rng, &state, 0x51633e2d);
}
bool hit = scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax);
#else
bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f);
#endif
#ifdef __KERNEL_DEBUG__
if(state.flag & PATH_RAY_CAMERA) {
debug_data.num_bvh_traversal_steps += isect.num_traversal_steps;
}
#endif
#ifdef __VOLUME__
/* volume attenuation, emission, scatter */
if(state.volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
#ifdef __VOLUME_DECOUPLED__
/* decoupled ray marching only supported on CPU */
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
ShaderData volume_sd;
shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
kernel_volume_decoupled_record(kg, &state,
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
/* direct light sampling */
if(volume_segment.closure_flag & SD_SCATTER) {
volume_segment.sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
bool all = kernel_data.integrator.sample_all_lights_direct;
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
throughput, &state, &L, all, &volume_ray, &volume_segment);
/* indirect light sampling */
int num_samples = kernel_data.integrator.volume_samples;
float num_samples_inv = 1.0f/num_samples;
for(int j = 0; j < num_samples; j++) {
/* workaround to fix correlation bug in T38710, can find better solution
* in random number generator later, for now this is done here to not impact
* performance of rendering without volumes */
RNG tmp_rng = cmj_hash(*rng, state.rng_offset);
PathState ps = state;
Ray pray = ray;
float3 tp = throughput;
/* branch RNG state */
path_state_branch(&ps, j, num_samples);
/* scatter sample. if we use distance sampling and take just one
* sample for direct and indirect light, we could share this
* computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_SCATTER_DISTANCE);
VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
&ps, &pray, &volume_sd, &tp, rphase, rscatter, &volume_segment, NULL, false);
2014-09-01 00:49:28 +00:00
(void)result;
kernel_assert(result == VOLUME_PATH_SCATTERED);
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &tp, &ps, &L, &pray)) {
kernel_path_indirect(kg, rng, pray, tp*num_samples_inv, num_samples, ps, &L);
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(&L);
path_radiance_reset_indirect(&L);
}
}
}
/* emission and transmittance */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
throughput *= volume_segment.accum_transmittance;
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
#else
/* GPU: no decoupled ray marching, scatter probalistically */
int num_samples = kernel_data.integrator.volume_samples;
float num_samples_inv = 1.0f/num_samples;
/* todo: we should cache the shader evaluations from stepping
* through the volume, for now we redo them multiple times */
for(int j = 0; j < num_samples; j++) {
PathState ps = state;
Ray pray = ray;
ShaderData volume_sd;
float3 tp = throughput * num_samples_inv;
/* branch RNG state */
path_state_branch(&ps, j, num_samples);
VolumeIntegrateResult result = kernel_volume_integrate(
kg, &ps, &volume_sd, &volume_ray, &L, &tp, rng, heterogeneous);
#ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* todo: support equiangular, MIS and all light sampling.
* alternatively get decoupled ray marching working on the GPU */
kernel_path_volume_connect_light(kg, rng, &volume_sd, tp, &state, &L);
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &tp, &ps, &L, &pray)) {
kernel_path_indirect(kg, rng, pray, tp, num_samples, ps, &L);
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(&L);
path_radiance_reset_indirect(&L);
}
}
#endif
}
/* todo: avoid this calculation using decoupled ray marching */
kernel_volume_shadow(kg, &state, &volume_ray, &throughput);
#endif
}
#endif
if(!hit) {
/* eval background shader if nothing hit */
if(kernel_data.background.transparent) {
L_transparent += average(throughput);
#ifdef __PASSES__
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
#endif
break;
}
#ifdef __BACKGROUND__
/* sample background shader */
float3 L_background = indirect_background(kg, &state, &ray);
path_radiance_accum_background(&L, throughput, L_background, state.bounce);
#endif
break;
}
/* setup shading */
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce);
shader_eval_surface(kg, &sd, 0.0f, state.flag, SHADER_CONTEXT_MAIN);
shader_merge_closures(&sd);
/* holdout */
#ifdef __HOLDOUT__
2014-08-14 14:31:34 +00:00
if(sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) {
if(kernel_data.background.transparent) {
float3 holdout_weight;
if(sd.flag & SD_HOLDOUT_MASK)
holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
else
holdout_weight = shader_holdout_eval(kg, &sd);
/* any throughput is ok, should all be identical here */
L_transparent += average(holdout_weight*throughput);
}
if(sd.flag & SD_HOLDOUT_MASK)
break;
}
#endif
/* holdout mask objects do not write data passes */
kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
#ifdef __EMISSION__
/* emission */
if(sd.flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
}
#endif
/* transparency termination */
if(state.flag & PATH_RAY_TRANSPARENT) {
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability = path_state_terminate_probability(kg, &state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
}
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
kernel_branched_path_ao(kg, &sd, &L, &state, rng, throughput);
}
#endif
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object */
if(sd.flag & SD_BSSRDF) {
kernel_branched_path_subsurface_scatter(kg, &sd, &L, &state,
rng, &ray, throughput);
}
#endif
if(!(sd.flag & SD_HAS_ONLY_VOLUME)) {
PathState hit_state = state;
#ifdef __EMISSION__
/* direct light */
if(kernel_data.integrator.use_direct_light) {
bool all = kernel_data.integrator.sample_all_lights_direct;
kernel_branched_path_surface_connect_light(kg, rng,
&sd, &hit_state, throughput, 1.0f, &L, all);
}
#endif
/* indirect light */
kernel_branched_path_surface_indirect_light(kg, rng,
&sd, throughput, 1.0f, &hit_state, &L);
/* continue in case of transparency */
throughput *= shader_bsdf_transparency(kg, &sd);
if(is_zero(throughput))
break;
}
path_state_next(kg, &state, LABEL_TRANSPARENT);
ray.P = ray_offset(sd.P, -sd.Ng);
ray.t -= sd.ray_length; /* clipping works through transparent */
#ifdef __RAY_DIFFERENTIALS__
ray.dP = sd.dP;
ray.dD.dx = -sd.dI.dx;
ray.dD.dy = -sd.dI.dy;
#endif
#ifdef __VOLUME__
/* enter/exit volume */
kernel_volume_stack_enter_exit(kg, &sd, state.volume_stack);
#endif
}
float3 L_sum = path_radiance_clamp_and_sum(kg, &L);
kernel_write_light_passes(kg, buffer, &L, sample);
#ifdef __KERNEL_DEBUG__
kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample);
#endif
return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
}
#endif
ccl_device_inline void kernel_path_trace_setup(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int x, int y, RNG *rng, Ray *ray)
{
float filter_u;
float filter_v;
int num_samples = kernel_data.integrator.aa_samples;
path_rng_init(kg, rng_state, sample, num_samples, rng, x, y, &filter_u, &filter_v);
/* sample camera ray */
float lens_u = 0.0f, lens_v = 0.0f;
if(kernel_data.cam.aperturesize > 0.0f)
path_rng_2D(kg, rng, sample, num_samples, PRNG_LENS_U, &lens_u, &lens_v);
float time = 0.0f;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.shuttertime != -1.0f)
time = path_rng_1D(kg, rng, sample, num_samples, PRNG_TIME);
#endif
camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, ray);
}
ccl_device void kernel_path_trace(KernelGlobals *kg,
ccl_global float *buffer, ccl_global uint *rng_state,
int sample, int x, int y, int offset, int stride)
{
/* buffer offset */
int index = offset + x + y*stride;
int pass_stride = kernel_data.film.pass_stride;
rng_state += index;
buffer += index*pass_stride;
/* initialize random numbers and ray */
RNG rng;
Ray ray;
kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
/* integrate */
Fisheye Camera for Cycles For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
2012-05-04 16:20:51 +00:00
float4 L;
if(ray.t != 0.0f)
L = kernel_path_integrate(kg, &rng, sample, ray, buffer);
else
L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* accumulate result in output buffer */
kernel_write_pass_float4(buffer, sample, L);
path_rng_end(kg, rng_state, rng);
}
#ifdef __BRANCHED_PATH__
ccl_device void kernel_branched_path_trace(KernelGlobals *kg,
ccl_global float *buffer, ccl_global uint *rng_state,
int sample, int x, int y, int offset, int stride)
{
/* buffer offset */
int index = offset + x + y*stride;
int pass_stride = kernel_data.film.pass_stride;
rng_state += index;
buffer += index*pass_stride;
/* initialize random numbers and ray */
RNG rng;
Ray ray;
kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
/* integrate */
float4 L;
if(ray.t != 0.0f)
L = kernel_branched_path_integrate(kg, &rng, sample, ray, buffer);
Fisheye Camera for Cycles For sample images see: http://www.dalaifelinto.com/?p=399 (equisolid) http://www.dalaifelinto.com/?p=389 (equidistant) The 'use_panorama' option is now part of a new Camera type: 'Panorama'. Created two other panorama cameras: - Equisolid: most of lens in the market simulate this lens - e.g. Nikon, Canon, ...) this works as a real lens up to an extent. The final result takes the sensor dimensions into account also. .:. to simulate a Nikon DX2S with a 10.5mm lens do: sensor: 23.7 x 15.7 fisheye lens: 10.5 fisheye fov: 180 render dimensions: 4288 x 2848 - Equidistant: this is not a real lens model. Although the old equidistant lens simulate this lens. The result is always as a circular fisheye that takes the whole sensor (in other words, it doesn't take the sensor into consideration). This is perfect for fulldomes ;) For the UI we have 10 to 360 as soft values and 10 to 3600 as hard values (because we can). Reference material: http://www.hdrlabs.com/tutorials/downloads_files/HDRI%20for%20CGI.pdf http://www.bobatkins.com/photography/technical/field_of_view.html Note, this is not a real simulation of the light path through the lens. The ideal solution would be this: https://graphics.stanford.edu/wikis/cs348b-11/Assignment3 http://www.graphics.stanford.edu/papers/camera/ Thanks Brecht for the fix, suggestions and code review. Kudos for the dome community for keeping me stimulated on the topic since 2009 ;) Patch partly implemented during lab time at VisGraf, IMPA - Rio de Janeiro.
2012-05-04 16:20:51 +00:00
else
L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* accumulate result in output buffer */
kernel_write_pass_float4(buffer, sample, L);
path_rng_end(kg, rng_state, rng);
}
#endif
CCL_NAMESPACE_END