blender/extern/bullet/Bullet/NarrowPhaseCollision/BU_AlgebraicPolynomialSolver.cpp

356 lines
13 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "BU_AlgebraicPolynomialSolver.h"
#include <math.h>
#include <SimdMinMax.h>
int BU_AlgebraicPolynomialSolver::Solve2Quadratic(SimdScalar p, SimdScalar q)
{
SimdScalar basic_h_local;
SimdScalar basic_h_local_delta;
basic_h_local = p * 0.5f;
basic_h_local_delta = basic_h_local * basic_h_local - q;
if (basic_h_local_delta > 0.0f) {
basic_h_local_delta = SimdSqrt(basic_h_local_delta);
m_roots[0] = - basic_h_local + basic_h_local_delta;
m_roots[1] = - basic_h_local - basic_h_local_delta;
return 2;
}
else if (SimdGreaterEqual(basic_h_local_delta, SIMD_EPSILON)) {
m_roots[0] = - basic_h_local;
return 1;
}
else {
return 0;
}
}
int BU_AlgebraicPolynomialSolver::Solve2QuadraticFull(SimdScalar a,SimdScalar b, SimdScalar c)
{
SimdScalar radical = b * b - 4.0f * a * c;
if(radical >= 0.f)
{
SimdScalar sqrtRadical = SimdSqrt(radical);
SimdScalar idenom = 1.0f/(2.0f * a);
m_roots[0]=(-b + sqrtRadical) * idenom;
m_roots[1]=(-b - sqrtRadical) * idenom;
return 2;
}
return 0;
}
#define cubic_rt(x) \
((x) > 0.0f ? SimdPow((SimdScalar)(x), 0.333333333333333333333333f) : \
((x) < 0.0f ? -SimdPow((SimdScalar)-(x), 0.333333333333333333333333f) : 0.0f))
/* */
/* this function solves the following cubic equation: */
/* */
/* 3 2 */
/* lead * x + a * x + b * x + c = 0. */
/* */
/* it returns the number of different roots found, and stores the roots in */
/* roots[0,2]. it returns -1 for a degenerate equation 0 = 0. */
/* */
int BU_AlgebraicPolynomialSolver::Solve3Cubic(SimdScalar lead, SimdScalar a, SimdScalar b, SimdScalar c)
{
SimdScalar p, q, r;
SimdScalar delta, u, phi;
SimdScalar dummy;
if (lead != 1.0) {
/* */
/* transform into normal form: x^3 + a x^2 + b x + c = 0 */
/* */
if (SimdEqual(lead, SIMD_EPSILON)) {
/* */
/* we have a x^2 + b x + c = 0 */
/* */
if (SimdEqual(a, SIMD_EPSILON)) {
/* */
/* we have b x + c = 0 */
/* */
if (SimdEqual(b, SIMD_EPSILON)) {
if (SimdEqual(c, SIMD_EPSILON)) {
return -1;
}
else {
return 0;
}
}
else {
m_roots[0] = -c / b;
return 1;
}
}
else {
p = c / a;
q = b / a;
return Solve2QuadraticFull(a,b,c);
}
}
else {
a = a / lead;
b = b / lead;
c = c / lead;
}
}
/* */
/* we substitute x = y - a / 3 in order to eliminate the quadric term. */
/* we get x^3 + p x + q = 0 */
/* */
a /= 3.0f;
u = a * a;
p = b / 3.0f - u;
q = a * (2.0f * u - b) + c;
/* */
/* now use Cardano's formula */
/* */
if (SimdEqual(p, SIMD_EPSILON)) {
if (SimdEqual(q, SIMD_EPSILON)) {
/* */
/* one triple root */
/* */
m_roots[0] = -a;
return 1;
}
else {
/* */
/* one real and two complex roots */
/* */
m_roots[0] = cubic_rt(-q) - a;
return 1;
}
}
q /= 2.0f;
delta = p * p * p + q * q;
if (delta > 0.0f) {
/* */
/* one real and two complex roots. note that v = -p / u. */
/* */
u = -q + SimdSqrt(delta);
u = cubic_rt(u);
m_roots[0] = u - p / u - a;
return 1;
}
else if (delta < 0.0) {
/* */
/* Casus irreducibilis: we have three real roots */
/* */
r = SimdSqrt(-p);
p *= -r;
r *= 2.0;
phi = SimdAcos(-q / p) / 3.0f;
dummy = SIMD_2_PI / 3.0f;
m_roots[0] = r * SimdCos(phi) - a;
m_roots[1] = r * SimdCos(phi + dummy) - a;
m_roots[2] = r * SimdCos(phi - dummy) - a;
return 3;
}
else {
/* */
/* one single and one SimdScalar root */
/* */
r = cubic_rt(-q);
m_roots[0] = 2.0f * r - a;
m_roots[1] = -r - a;
return 2;
}
}
/* */
/* this function solves the following quartic equation: */
/* */
/* 4 3 2 */
/* lead * x + a * x + b * x + c * x + d = 0. */
/* */
/* it returns the number of different roots found, and stores the roots in */
/* roots[0,3]. it returns -1 for a degenerate equation 0 = 0. */
/* */
int BU_AlgebraicPolynomialSolver::Solve4Quartic(SimdScalar lead, SimdScalar a, SimdScalar b, SimdScalar c, SimdScalar d)
{
SimdScalar p, q ,r;
SimdScalar u, v, w;
int i, num_roots, num_tmp;
//SimdScalar tmp[2];
if (lead != 1.0) {
/* */
/* transform into normal form: x^4 + a x^3 + b x^2 + c x + d = 0 */
/* */
if (SimdEqual(lead, SIMD_EPSILON)) {
/* */
/* we have a x^3 + b x^2 + c x + d = 0 */
/* */
if (SimdEqual(a, SIMD_EPSILON)) {
/* */
/* we have b x^2 + c x + d = 0 */
/* */
if (SimdEqual(b, SIMD_EPSILON)) {
/* */
/* we have c x + d = 0 */
/* */
if (SimdEqual(c, SIMD_EPSILON)) {
if (SimdEqual(d, SIMD_EPSILON)) {
return -1;
}
else {
return 0;
}
}
else {
m_roots[0] = -d / c;
return 1;
}
}
else {
p = c / b;
q = d / b;
return Solve2QuadraticFull(b,c,d);
}
}
else {
return Solve3Cubic(1.0, b / a, c / a, d / a);
}
}
else {
a = a / lead;
b = b / lead;
c = c / lead;
d = d / lead;
}
}
/* */
/* we substitute x = y - a / 4 in order to eliminate the cubic term. */
/* we get: y^4 + p y^2 + q y + r = 0. */
/* */
a /= 4.0f;
p = b - 6.0f * a * a;
q = a * (8.0f * a * a - 2.0f * b) + c;
r = a * (a * (b - 3.f * a * a) - c) + d;
if (SimdEqual(q, SIMD_EPSILON)) {
/* */
/* biquadratic equation: y^4 + p y^2 + r = 0. */
/* */
num_roots = Solve2Quadratic(p, r);
if (num_roots > 0) {
if (m_roots[0] > 0.0f) {
if (num_roots > 1) {
if ((m_roots[1] > 0.0f) && (m_roots[1] != m_roots[0])) {
u = SimdSqrt(m_roots[1]);
m_roots[2] = u - a;
m_roots[3] = -u - a;
u = SimdSqrt(m_roots[0]);
m_roots[0] = u - a;
m_roots[1] = -u - a;
return 4;
}
else {
u = SimdSqrt(m_roots[0]);
m_roots[0] = u - a;
m_roots[1] = -u - a;
return 2;
}
}
else {
u = SimdSqrt(m_roots[0]);
m_roots[0] = u - a;
m_roots[1] = -u - a;
return 2;
}
}
}
return 0;
}
else if (SimdEqual(r, SIMD_EPSILON)) {
/* */
/* no absolute term: y (y^3 + p y + q) = 0. */
/* */
num_roots = Solve3Cubic(1.0, 0.0, p, q);
for (i = 0; i < num_roots; ++i) m_roots[i] -= a;
if (num_roots != -1) {
m_roots[num_roots] = -a;
++num_roots;
}
else {
m_roots[0] = -a;
num_roots = 1;;
}
return num_roots;
}
else {
/* */
/* we solve the resolvent cubic equation */
/* */
num_roots = Solve3Cubic(1.0f, -0.5f * p, -r, 0.5f * r * p - 0.125f * q * q);
if (num_roots == -1) {
num_roots = 1;
m_roots[0] = 0.0f;
}
/* */
/* build two quadric equations */
/* */
w = m_roots[0];
u = w * w - r;
v = 2.0f * w - p;
if (SimdEqual(u, SIMD_EPSILON))
u = 0.0;
else if (u > 0.0f)
u = SimdSqrt(u);
else
return 0;
if (SimdEqual(v, SIMD_EPSILON))
v = 0.0;
else if (v > 0.0f)
v = SimdSqrt(v);
else
return 0;
if (q < 0.0f) v = -v;
w -= u;
num_roots=Solve2Quadratic(v, w);
for (i = 0; i < num_roots; ++i)
{
m_roots[i] -= a;
}
w += 2.0f *u;
SimdScalar tmp[2];
tmp[0] = m_roots[0];
tmp[1] = m_roots[1];
num_tmp = Solve2Quadratic(-v, w);
for (i = 0; i < num_tmp; ++i)
{
m_roots[i + num_roots] = tmp[i] - a;
m_roots[i]=tmp[i];
}
return (num_tmp + num_roots);
}
}