blender/intern/cycles/kernel/osl/nodes/node_texture.h

252 lines
5.4 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Voronoi Distances */
float voronoi_distance(string distance_metric, vector d, float e)
{
float result = 0.0;
if(distance_metric == "Distance Squared")
result = dot(d, d);
if(distance_metric == "Actual Distance")
result = length(d);
if(distance_metric == "Manhattan")
result = fabs(d[0]) + fabs(d[1]) + fabs(d[2]);
if(distance_metric == "Chebychev")
result = max(fabs(d[0]), max(fabs(d[1]), fabs(d[2])));
if(distance_metric == "Minkovsky 1/2")
result = sqrt(fabs(d[0])) + sqrt(fabs(d[1])) + sqrt(fabs(d[1]));
if(distance_metric == "Minkovsky 4")
result = sqrt(sqrt(dot(d*d, d*d)));
if(distance_metric == "Minkovsky")
result = pow(pow(fabs(d[0]), e) + pow(fabs(d[1]), e) + pow(fabs(d[2]), e), 1.0/e);
return result;
}
/* Voronoi / Worley like */
color cellnoise_color(point p)
{
float r = cellnoise(p);
float g = cellnoise(point(p[1], p[0], p[2]));
float b = cellnoise(point(p[1], p[2], p[0]));
return color(r, g, b);
}
void voronoi(point p, string distance_metric, float e, float da[4], point pa[4])
{
/* returns distances in da and point coords in pa */
int xx, yy, zz, xi, yi, zi;
xi = (int)floor(p[0]);
yi = (int)floor(p[1]);
zi = (int)floor(p[2]);
da[0] = 1e10;
da[1] = 1e10;
da[2] = 1e10;
da[3] = 1e10;
for(xx = xi-1; xx <= xi+1; xx++) {
for(yy = yi-1; yy <= yi+1; yy++) {
for(zz = zi-1; zz <= zi+1; zz++) {
point ip = point(xx, yy, zz);
point vp = (point)cellnoise_color(ip);
point pd = p - (vp + ip);
float d = voronoi_distance(distance_metric, pd, e);
vp += point(xx, yy, zz);
if(d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if(d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if(d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if(d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
}
float voronoi_Fn(point p, int n)
{
float da[4];
point pa[4];
voronoi(p, "Distance Squared", 0, da, pa);
return da[n];
}
float voronoi_FnFn(point p, int n1, int n2)
{
float da[4];
point pa[4];
voronoi(p, "Distance Squared", 0, da, pa);
return da[n2] - da[n1];
}
float voronoi_F1(point p) { return voronoi_Fn(p, 0); }
float voronoi_F2(point p) { return voronoi_Fn(p, 1); }
float voronoi_F3(point p) { return voronoi_Fn(p, 2); }
float voronoi_F4(point p) { return voronoi_Fn(p, 3); }
float voronoi_F1F2(point p) { return voronoi_FnFn(p, 0, 1); }
float voronoi_Cr(point p)
{
/* crackle type pattern, just a scale/clamp of F2-F1 */
float t = 10.0*voronoi_F1F2(p);
return (t > 1.0)? 1.0: t;
}
float voronoi_F1S(point p) { return 2.0*voronoi_F1(p) - 1.0; }
float voronoi_F2S(point p) { return 2.0*voronoi_F2(p) - 1.0; }
float voronoi_F3S(point p) { return 2.0*voronoi_F3(p) - 1.0; }
float voronoi_F4S(point p) { return 2.0*voronoi_F4(p) - 1.0; }
float voronoi_F1F2S(point p) { return 2.0*voronoi_F1F2(p) - 1.0; }
float voronoi_CrS(point p) { return 2.0*voronoi_Cr(p) - 1.0; }
/* Noise Bases */
float noise_basis(point p, string basis)
{
float result = 0.0;
if(basis == "Perlin")
result = noise(p);
if(basis == "Voronoi F1")
result = voronoi_F1S(p);
if(basis == "Voronoi F2")
result = voronoi_F2S(p);
if(basis == "Voronoi F3")
result = voronoi_F3S(p);
if(basis == "Voronoi F4")
result = voronoi_F4S(p);
if(basis == "Voronoi F2-F1")
result = voronoi_F1F2S(p);
if(basis == "Voronoi Crackle")
result = voronoi_CrS(p);
if(basis == "Cell Noise")
result = cellnoise(p);
return result;
}
/* Soft/Hard Noise */
float noise_basis_hard(point p, string basis, int hard)
{
float t = noise_basis(p, basis);
return (hard)? fabs(2.0*t - 1.0): t;
}
/* Waves */
float noise_wave(string wave, float a)
{
float result = 0.0;
if(wave == "Sine") {
result = 0.5 + 0.5*sin(a);
}
else if(wave == "Saw") {
float b = 2*M_PI;
int n = (int)(a / b);
a -= n*b;
if(a < 0) a += b;
result = a / b;
}
else if(wave == "Tri") {
float b = 2*M_PI;
float rmax = 1.0;
result = rmax - 2.0*fabs(floor((a*(1.0/b))+0.5) - (a*(1.0/b)));
}
return result;
}
/* Turbulence */
float noise_turbulence(point p, string basis, int octaves, int hard)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
int i;
for(i = 0; i <= octaves; i++) {
float t = noise_basis(fscale*p, basis);
if(hard)
t = fabs(2.0*t - 1.0);
sum += t*amp;
amp *= 0.5;
fscale *= 2.0;
}
sum *= ((float)(1 << octaves)/(float)((1 << (octaves+1)) - 1));
return sum;
}
/* Utility */
float nonzero(float f, float eps)
{
float r;
if(abs(f) < eps)
r = sign(f)*eps;
else
r = f;
return r;
}