blender/intern/cycles/kernel/kernel_direct_lighting.cl

139 lines
6.3 KiB
Common Lisp
Raw Normal View History

2015-05-09 14:34:30 +00:00
/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_split.h"
/*
* Note on kernel_ocl_path_trace_direct_lighting kernel.
* This is the eighth kernel in the ray tracing logic. This is the seventh
* of the path iteration kernels. This kernel takes care of direct lighting
* logic. However, the "shadow ray cast" part of direct lighting is handled
* in the next kernel.
*
* This kernels determines the rays for which a shadow_blocked() function associated with direct lighting should be executed.
* Those rays for which a shadow_blocked() function for direct-lighting must be executed, are marked with flag RAY_SHADOW_RAY_CAST_DL and
* enqueued into the queue QUEUE_SHADOW_RAY_CAST_DL_RAYS
*
* The input and output are as follows,
*
* rng_coop -----------------------------------------|--- kernel_ocl_path_trace_direct_lighting --|--- BSDFEval_coop
* PathState_coop -----------------------------------| |--- ISLamp_coop
* shader_data --------------------------------------| |--- LightRay_coop
* ray_state ----------------------------------------| |--- ray_state
* Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ---| |
* kg (globals + data) ------------------------------| |
* queuesize ----------------------------------------| |
*
* note on shader_DL : shader_DL is neither input nor output to this kernel; shader_DL is filled and consumed in this kernel itself.
* Note on Queues :
* This kernel only reads from the QUEUE_ACTIVE_AND_REGENERATED_RAYS queue and processes
* only the rays of state RAY_ACTIVE; If a ray needs to execute the corresponding shadow_blocked
* part, after direct lighting, the ray is marked with RAY_SHADOW_RAY_CAST_DL flag.
*
* State of queues when this kernel is called :
* state of queues QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be same
* before and after this kernel call.
* QUEUE_SHADOW_RAY_CAST_DL_RAYS queue will be filled with rays for which a shadow_blocked function must be executed, after this
* kernel call. Before this kernel call the QUEUE_SHADOW_RAY_CAST_DL_RAYS will be empty.
*/
__kernel void kernel_ocl_path_trace_direct_lighting(
ccl_global char *globals,
ccl_constant KernelData *data,
ccl_global char *shader_data, /* Required for direct lighting */
ccl_global char *shader_DL, /* Required for direct lighting */
ccl_global uint *rng_coop, /* Required for direct lighting */
ccl_global PathState *PathState_coop, /* Required for direct lighting */
ccl_global int *ISLamp_coop, /* Required for direct lighting */
ccl_global Ray *LightRay_coop, /* Required for direct lighting */
ccl_global BsdfEval *BSDFEval_coop, /* Required for direct lighting */
ccl_global char *ray_state, /* Denotes the state of each ray */
ccl_global int *Queue_data, /* Queue memory */
ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
int queuesize /* Size (capacity) of each queue */
)
{
ccl_local unsigned int local_queue_atomics;
if(get_local_id(0) == 0 && get_local_id(1) == 0) {
local_queue_atomics = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
char enqueue_flag = 0;
int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
ray_index = get_ray_index(ray_index, QUEUE_ACTIVE_AND_REGENERATED_RAYS, Queue_data, queuesize, 0);
#ifdef __COMPUTE_DEVICE_GPU__
/* If we are executing on a GPU device, we exit all threads that are not required
* If we are executing on a CPU device, then we need to keep all threads active
* since we have barrier() calls later in the kernel. CPU devices,
* expect all threads to execute barrier statement.
*/
if(ray_index == QUEUE_EMPTY_SLOT)
return;
#endif
#ifndef __COMPUTE_DEVICE_GPU__
if(ray_index != QUEUE_EMPTY_SLOT) {
#endif
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
/* Load kernel globals structure and ShaderData structure */
KernelGlobals *kg = (KernelGlobals *)globals;
ShaderData *sd = (ShaderData *)shader_data;
ShaderData *sd_DL = (ShaderData *)shader_DL;
ccl_global PathState *state = &PathState_coop[ray_index];
/* direct lighting */
#ifdef __EMISSION__
if((kernel_data.integrator.use_direct_light && (ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL))) {
/* sample illumination from lights to find path contribution */
ccl_global RNG* rng = &rng_coop[ray_index];
float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
LightSample ls;
light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls);
Ray light_ray;
#ifdef __OBJECT_MOTION__
light_ray.time = ccl_fetch(sd, time);
#endif
2015-05-09 14:34:30 +00:00
BsdfEval L_light;
bool is_lamp;
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce, sd_DL)) {
/* write intermediate data to global memory to access from the next kernel */
LightRay_coop[ray_index] = light_ray;
BSDFEval_coop[ray_index] = L_light;
ISLamp_coop[ray_index] = is_lamp;
/// mark ray state for next shadow kernel
ADD_RAY_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_DL);
enqueue_flag = 1;
}
}
#endif
}
#ifndef __COMPUTE_DEVICE_GPU__
}
#endif
#ifdef __EMISSION__
/* Enqueue RAY_SHADOW_RAY_CAST_DL rays */
enqueue_ray_index_local(ray_index, QUEUE_SHADOW_RAY_CAST_DL_RAYS, enqueue_flag, queuesize, &local_queue_atomics, Queue_data, Queue_index);
#endif
}