blender/source/gameengine/Physics/Bullet/CcdPhysicsEnvironment.cpp

1376 lines
30 KiB
C++
Raw Normal View History

#include "CcdPhysicsEnvironment.h"
#include "CcdPhysicsController.h"
#include <algorithm>
#include "SimdTransform.h"
#include "Dynamics/RigidBody.h"
#include "BroadphaseCollision/BroadphaseInterface.h"
#include "BroadphaseCollision/SimpleBroadphase.h"
#include "BroadphaseCollision/AxisSweep3.h"
#include "CollisionDispatch/CollisionWorld.h"
#include "CollisionShapes/ConvexShape.h"
#include "BroadphaseCollision/Dispatcher.h"
#include "NarrowPhaseCollision/PersistentManifold.h"
#include "CollisionShapes/TriangleMeshShape.h"
#include "ConstraintSolver/OdeConstraintSolver.h"
#include "ConstraintSolver/SimpleConstraintSolver.h"
#include "IDebugDraw.h"
#include "NarrowPhaseCollision/VoronoiSimplexSolver.h"
#include "NarrowPhaseCollision/SubSimplexConvexCast.h"
#include "NarrowPhaseCollision/GjkConvexCast.h"
#include "CollisionDispatch/CollisionDispatcher.h"
#include "PHY_IMotionState.h"
#include "CollisionDispatch/EmptyCollisionAlgorithm.h"
#include "CollisionDispatch/UnionFind.h"
#include "NarrowPhaseCollision/RaycastCallback.h"
#include "CollisionShapes/SphereShape.h"
bool useIslands = true;
#ifdef NEW_BULLET_VEHICLE_SUPPORT
#include "Vehicle/RaycastVehicle.h"
#include "Vehicle/VehicleRaycaster.h"
#include "Vehicle/WheelInfo.h"
#include "PHY_IVehicle.h"
RaycastVehicle::VehicleTuning gTuning;
#endif //NEW_BULLET_VEHICLE_SUPPORT
#include "AabbUtil2.h"
#include "ConstraintSolver/ConstraintSolver.h"
#include "ConstraintSolver/Point2PointConstraint.h"
#include "ConstraintSolver/HingeConstraint.h"
//#include "BroadphaseCollision/QueryDispatcher.h"
//#include "BroadphaseCollision/QueryBox.h"
//todo: change this to allow dynamic registration of types!
#ifdef WIN32
void DrawRasterizerLine(const float* from,const float* to,int color);
#endif
#include "ConstraintSolver/ContactConstraint.h"
#include <stdio.h>
#ifdef NEW_BULLET_VEHICLE_SUPPORT
class WrapperVehicle : public PHY_IVehicle
{
RaycastVehicle* m_vehicle;
PHY_IPhysicsController* m_chassis;
public:
WrapperVehicle(RaycastVehicle* vehicle,PHY_IPhysicsController* chassis)
:m_vehicle(vehicle),
m_chassis(chassis)
{
}
RaycastVehicle* GetVehicle()
{
return m_vehicle;
}
PHY_IPhysicsController* GetChassis()
{
return m_chassis;
}
virtual void AddWheel(
PHY_IMotionState* motionState,
PHY__Vector3 connectionPoint,
PHY__Vector3 downDirection,
PHY__Vector3 axleDirection,
float suspensionRestLength,
float wheelRadius,
bool hasSteering
)
{
SimdVector3 connectionPointCS0(connectionPoint[0],connectionPoint[1],connectionPoint[2]);
SimdVector3 wheelDirectionCS0(downDirection[0],downDirection[1],downDirection[2]);
SimdVector3 wheelAxle(axleDirection[0],axleDirection[1],axleDirection[2]);
WheelInfo& info = m_vehicle->AddWheel(connectionPointCS0,wheelDirectionCS0,wheelAxle,
suspensionRestLength,wheelRadius,gTuning,hasSteering);
info.m_clientInfo = motionState;
}
void SyncWheels()
{
int numWheels = GetNumWheels();
int i;
for (i=0;i<numWheels;i++)
{
WheelInfo& info = m_vehicle->GetWheelInfo(i);
PHY_IMotionState* motionState = (PHY_IMotionState*)info.m_clientInfo ;
m_vehicle->UpdateWheelTransform(i);
SimdTransform trans = m_vehicle->GetWheelTransformWS(i);
SimdQuaternion orn = trans.getRotation();
const SimdVector3& pos = trans.getOrigin();
motionState->setWorldOrientation(orn.x(),orn.y(),orn.z(),orn[3]);
motionState->setWorldPosition(pos.x(),pos.y(),pos.z());
}
}
virtual int GetNumWheels() const
{
return m_vehicle->GetNumWheels();
}
virtual void GetWheelPosition(int wheelIndex,float& posX,float& posY,float& posZ) const
{
SimdTransform trans = m_vehicle->GetWheelTransformWS(wheelIndex);
posX = trans.getOrigin().x();
posY = trans.getOrigin().y();
posZ = trans.getOrigin().z();
}
virtual void GetWheelOrientationQuaternion(int wheelIndex,float& quatX,float& quatY,float& quatZ,float& quatW) const
{
SimdTransform trans = m_vehicle->GetWheelTransformWS(wheelIndex);
SimdQuaternion quat = trans.getRotation();
SimdMatrix3x3 orn2(quat);
quatX = trans.getRotation().x();
quatY = trans.getRotation().y();
quatZ = trans.getRotation().z();
quatW = trans.getRotation()[3];
//printf("test");
}
virtual float GetWheelRotation(int wheelIndex) const
{
float rotation = 0.f;
if ((wheelIndex>=0) && (wheelIndex< m_vehicle->GetNumWheels()))
{
WheelInfo& info = m_vehicle->GetWheelInfo(wheelIndex);
rotation = info.m_rotation;
}
return rotation;
}
virtual int GetUserConstraintId() const
{
return m_vehicle->GetUserConstraintId();
}
virtual int GetUserConstraintType() const
{
return m_vehicle->GetUserConstraintType();
}
virtual void SetSteeringValue(float steering,int wheelIndex)
{
m_vehicle->SetSteeringValue(steering,wheelIndex);
}
virtual void ApplyEngineForce(float force,int wheelIndex)
{
m_vehicle->ApplyEngineForce(force,wheelIndex);
}
virtual void ApplyBraking(float braking,int wheelIndex)
{
if ((wheelIndex>=0) && (wheelIndex< m_vehicle->GetNumWheels()))
{
WheelInfo& info = m_vehicle->GetWheelInfo(wheelIndex);
info.m_brake = braking;
}
}
2006-02-21 07:08:23 +00:00
virtual void SetWheelFriction(float friction,int wheelIndex)
{
if ((wheelIndex>=0) && (wheelIndex< m_vehicle->GetNumWheels()))
{
WheelInfo& info = m_vehicle->GetWheelInfo(wheelIndex);
info.m_frictionSlip = friction;
}
}
virtual void SetSuspensionStiffness(float suspensionStiffness,int wheelIndex)
{
if ((wheelIndex>=0) && (wheelIndex< m_vehicle->GetNumWheels()))
{
WheelInfo& info = m_vehicle->GetWheelInfo(wheelIndex);
info.m_suspensionStiffness = suspensionStiffness;
}
}
virtual void SetSuspensionDamping(float suspensionDamping,int wheelIndex)
{
if ((wheelIndex>=0) && (wheelIndex< m_vehicle->GetNumWheels()))
{
WheelInfo& info = m_vehicle->GetWheelInfo(wheelIndex);
info.m_wheelsDampingRelaxation = suspensionDamping;
}
}
virtual void SetSuspensionCompression(float suspensionCompression,int wheelIndex)
{
if ((wheelIndex>=0) && (wheelIndex< m_vehicle->GetNumWheels()))
{
WheelInfo& info = m_vehicle->GetWheelInfo(wheelIndex);
info.m_wheelsDampingCompression = suspensionCompression;
}
}
virtual void SetRollInfluence(float rollInfluence,int wheelIndex)
{
if ((wheelIndex>=0) && (wheelIndex< m_vehicle->GetNumWheels()))
{
WheelInfo& info = m_vehicle->GetWheelInfo(wheelIndex);
info.m_rollInfluence = rollInfluence;
}
}
};
#endif //NEW_BULLET_VEHICLE_SUPPORT
static void DrawAabb(IDebugDraw* debugDrawer,const SimdVector3& from,const SimdVector3& to,const SimdVector3& color)
{
SimdVector3 halfExtents = (to-from)* 0.5f;
SimdVector3 center = (to+from) *0.5f;
int i,j;
SimdVector3 edgecoord(1.f,1.f,1.f),pa,pb;
for (i=0;i<4;i++)
{
for (j=0;j<3;j++)
{
pa = SimdVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1],
edgecoord[2]*halfExtents[2]);
pa+=center;
int othercoord = j%3;
edgecoord[othercoord]*=-1.f;
pb = SimdVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1],
edgecoord[2]*halfExtents[2]);
pb+=center;
debugDrawer->DrawLine(pa,pb,color);
}
edgecoord = SimdVector3(-1.f,-1.f,-1.f);
if (i<3)
edgecoord[i]*=-1.f;
}
}
CcdPhysicsEnvironment::CcdPhysicsEnvironment(CollisionDispatcher* dispatcher,BroadphaseInterface* broadphase)
:m_scalingPropagated(false),
m_numIterations(10),
m_ccdMode(0),
m_solverType(-1)
{
if (!dispatcher)
dispatcher = new CollisionDispatcher();
if(!broadphase)
{
//todo: calculate/let user specify this world sizes
SimdVector3 worldMin(-10000,-10000,-10000);
SimdVector3 worldMax(10000,10000,10000);
broadphase = new AxisSweep3(worldMin,worldMax);
//broadphase = new SimpleBroadphase();
}
setSolverType(1);
m_collisionWorld = new CollisionWorld(dispatcher,broadphase);
m_debugDrawer = 0;
m_gravity = SimdVector3(0.f,-10.f,0.f);
}
void CcdPhysicsEnvironment::addCcdPhysicsController(CcdPhysicsController* ctrl)
{
RigidBody* body = ctrl->GetRigidBody();
body->setGravity( m_gravity );
m_controllers.push_back(ctrl);
m_collisionWorld->AddCollisionObject(body);
assert(body->m_broadphaseHandle);
BroadphaseInterface* scene = GetBroadphase();
CollisionShape* shapeinterface = ctrl->GetCollisionShape();
assert(shapeinterface);
const SimdTransform& t = ctrl->GetRigidBody()->getCenterOfMassTransform();
SimdPoint3 minAabb,maxAabb;
shapeinterface->GetAabb(t,minAabb,maxAabb);
float timeStep = 0.02f;
//extent it with the motion
SimdVector3 linMotion = body->getLinearVelocity()*timeStep;
float maxAabbx = maxAabb.getX();
float maxAabby = maxAabb.getY();
float maxAabbz = maxAabb.getZ();
float minAabbx = minAabb.getX();
float minAabby = minAabb.getY();
float minAabbz = minAabb.getZ();
if (linMotion.x() > 0.f)
maxAabbx += linMotion.x();
else
minAabbx += linMotion.x();
if (linMotion.y() > 0.f)
maxAabby += linMotion.y();
else
minAabby += linMotion.y();
if (linMotion.z() > 0.f)
maxAabbz += linMotion.z();
else
minAabbz += linMotion.z();
minAabb = SimdVector3(minAabbx,minAabby,minAabbz);
maxAabb = SimdVector3(maxAabbx,maxAabby,maxAabbz);
}
void CcdPhysicsEnvironment::removeCcdPhysicsController(CcdPhysicsController* ctrl)
{
//also remove constraint
{
std::vector<TypedConstraint*>::iterator i;
for (i=m_constraints.begin();
!(i==m_constraints.end()); i++)
{
TypedConstraint* constraint = (*i);
if ((&constraint->GetRigidBodyA() == ctrl->GetRigidBody() ||
(&constraint->GetRigidBodyB() == ctrl->GetRigidBody())))
{
removeConstraint(constraint->GetUserConstraintId());
//only 1 constraint per constroller
break;
}
}
}
{
std::vector<TypedConstraint*>::iterator i;
for (i=m_constraints.begin();
!(i==m_constraints.end()); i++)
{
TypedConstraint* constraint = (*i);
if ((&constraint->GetRigidBodyA() == ctrl->GetRigidBody() ||
(&constraint->GetRigidBodyB() == ctrl->GetRigidBody())))
{
removeConstraint(constraint->GetUserConstraintId());
//only 1 constraint per constroller
break;
}
}
}
m_collisionWorld->RemoveCollisionObject(ctrl->GetRigidBody());
{
std::vector<CcdPhysicsController*>::iterator i =
std::find(m_controllers.begin(), m_controllers.end(), ctrl);
if (!(i == m_controllers.end()))
{
std::swap(*i, m_controllers.back());
m_controllers.pop_back();
}
}
}
void CcdPhysicsEnvironment::beginFrame()
{
}
bool CcdPhysicsEnvironment::proceedDeltaTime(double curTime,float timeStep)
{
if (!SimdFuzzyZero(timeStep))
{
#define SPLIT_TIMESTEP 1
#ifdef SPLIT_TIMESTEP
proceedDeltaTimeOneStep(0.5f*timeStep);
proceedDeltaTimeOneStep(0.5f*timeStep);
#else
proceedDeltaTimeOneStep(timeStep);
#endif
} else
{
//todo: interpolate
}
return true;
}
/// Perform an integration step of duration 'timeStep'.
bool CcdPhysicsEnvironment::proceedDeltaTimeOneStep(float timeStep)
{
// printf("CcdPhysicsEnvironment::proceedDeltaTime\n");
if (SimdFuzzyZero(timeStep))
return true;
if (m_debugDrawer)
{
gDisableDeactivation = (m_debugDrawer->GetDebugMode() & IDebugDraw::DBG_NoDeactivation);
}
2005-08-08 17:08:42 +00:00
//this is needed because scaling is not known in advance, and scaling has to propagate to the shape
if (!m_scalingPropagated)
{
SyncMotionStates(timeStep);
m_scalingPropagated = true;
}
{
// std::vector<CcdPhysicsController*>::iterator i;
int k;
for (k=0;k<GetNumControllers();k++)
{
CcdPhysicsController* ctrl = m_controllers[k];
// SimdTransform predictedTrans;
RigidBody* body = ctrl->GetRigidBody();
if (body->GetActivationState() != ISLAND_SLEEPING)
{
body->applyForces( timeStep);
body->integrateVelocities( timeStep);
body->predictIntegratedTransform(timeStep,body->m_nextPredictedWorldTransform);
}
}
}
BroadphaseInterface* scene = GetBroadphase();
//
// collision detection (?)
//
int numsubstep = m_numIterations;
DispatcherInfo dispatchInfo;
dispatchInfo.m_timeStep = timeStep;
dispatchInfo.m_stepCount = 0;
scene->DispatchAllCollisionPairs(*GetDispatcher(),dispatchInfo);///numsubstep,g);
int numRigidBodies = m_controllers.size();
m_collisionWorld->UpdateActivationState();
//contacts
//solve the regular constraints (point 2 point, hinge, etc)
for (int g=0;g<numsubstep;g++)
{
//
// constraint solving
//
int i;
int numConstraints = m_constraints.size();
//point to point constraints
for (i=0;i< numConstraints ; i++ )
{
TypedConstraint* constraint = m_constraints[i];
constraint->BuildJacobian();
constraint->SolveConstraint( timeStep );
}
}
//solve the vehicles
#ifdef NEW_BULLET_VEHICLE_SUPPORT
//vehicles
int numVehicles = m_wrapperVehicles.size();
for (int i=0;i<numVehicles;i++)
{
WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
RaycastVehicle* vehicle = wrapperVehicle->GetVehicle();
vehicle->UpdateVehicle( timeStep);
}
#endif //NEW_BULLET_VEHICLE_SUPPORT
struct InplaceSolverIslandCallback : public CollisionDispatcher::IslandCallback
{
ContactSolverInfo& m_solverInfo;
ConstraintSolver* m_solver;
IDebugDraw* m_debugDrawer;
InplaceSolverIslandCallback(
ContactSolverInfo& solverInfo,
ConstraintSolver* solver,
IDebugDraw* debugDrawer)
:m_solverInfo(solverInfo),
m_solver(solver),
m_debugDrawer(debugDrawer)
{
}
virtual void ProcessIsland(PersistentManifold** manifolds,int numManifolds)
{
m_solver->SolveGroup( manifolds, numManifolds,m_solverInfo,m_debugDrawer);
}
};
m_solverInfo.m_friction = 0.9f;
m_solverInfo.m_numIterations = m_numIterations;
m_solverInfo.m_timeStep = timeStep;
m_solverInfo.m_restitution = 0.f;//m_restitution;
InplaceSolverIslandCallback solverCallback(
m_solverInfo,
m_solver,
m_debugDrawer);
/// solve all the contact points and contact friction
GetDispatcher()->BuildAndProcessIslands(numRigidBodies,&solverCallback);
{
{
std::vector<CcdPhysicsController*>::iterator i;
//
// update aabbs, only for moving objects (!)
//
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
RigidBody* body = ctrl->GetRigidBody();
SimdPoint3 minAabb,maxAabb;
CollisionShape* shapeinterface = ctrl->GetCollisionShape();
shapeinterface->CalculateTemporalAabb(body->getCenterOfMassTransform(),
body->getLinearVelocity(),body->getAngularVelocity(),
timeStep,minAabb,maxAabb);
shapeinterface->GetAabb(body->getCenterOfMassTransform(),
minAabb,maxAabb);
SimdVector3 manifoldExtraExtents(gContactBreakingTreshold,gContactBreakingTreshold,gContactBreakingTreshold);
minAabb -= manifoldExtraExtents;
maxAabb += manifoldExtraExtents;
BroadphaseProxy* bp = body->m_broadphaseHandle;
if (bp)
{
#ifdef WIN32
SimdVector3 color (1,1,0);
if (m_debugDrawer)
{
//draw aabb
switch (body->GetActivationState())
{
case ISLAND_SLEEPING:
{
color.setValue(1,1,1);
break;
}
case WANTS_DEACTIVATION:
{
color.setValue(0,0,1);
break;
}
case ACTIVE_TAG:
{
break;
}
case DISABLE_DEACTIVATION:
{
color.setValue(1,0,1);
};
};
if (m_debugDrawer->GetDebugMode() & IDebugDraw::DBG_DrawAabb)
{
DrawAabb(m_debugDrawer,minAabb,maxAabb,color);
}
}
#endif
scene->SetAabb(bp,minAabb,maxAabb);
}
}
float toi = 1.f;
if (m_ccdMode == 3)
{
DispatcherInfo dispatchInfo;
dispatchInfo.m_timeStep = timeStep;
dispatchInfo.m_stepCount = 0;
dispatchInfo.m_dispatchFunc = DispatcherInfo::DISPATCH_CONTINUOUS;
scene->DispatchAllCollisionPairs( *GetDispatcher(),dispatchInfo);///numsubstep,g);
toi = dispatchInfo.m_timeOfImpact;
}
//
// integrating solution
//
{
std::vector<CcdPhysicsController*>::iterator i;
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = *i;
SimdTransform predictedTrans;
RigidBody* body = ctrl->GetRigidBody();
if (body->GetActivationState() != ISLAND_SLEEPING)
{
body->predictIntegratedTransform(timeStep* toi, predictedTrans);
body->proceedToTransform( predictedTrans);
}
}
}
//
// disable sleeping physics objects
//
std::vector<CcdPhysicsController*> m_sleepingControllers;
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
RigidBody* body = ctrl->GetRigidBody();
ctrl->UpdateDeactivation(timeStep);
if (ctrl->wantsSleeping())
{
if (body->GetActivationState() == ACTIVE_TAG)
body->SetActivationState( WANTS_DEACTIVATION );
} else
{
if (body->GetActivationState() != DISABLE_DEACTIVATION)
body->SetActivationState( ACTIVE_TAG );
}
if (useIslands)
{
if (body->GetActivationState() == ISLAND_SLEEPING)
{
m_sleepingControllers.push_back(ctrl);
}
} else
{
if (ctrl->wantsSleeping())
{
m_sleepingControllers.push_back(ctrl);
}
}
}
}
SyncMotionStates(timeStep);
#ifdef NEW_BULLET_VEHICLE_SUPPORT
//sync wheels for vehicles
int numVehicles = m_wrapperVehicles.size();
for (int i=0;i<numVehicles;i++)
{
WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
wrapperVehicle->SyncWheels();
}
#endif //NEW_BULLET_VEHICLE_SUPPORT
}
return true;
}
void CcdPhysicsEnvironment::setDebugMode(int debugMode)
{
if (m_debugDrawer){
m_debugDrawer->SetDebugMode(debugMode);
}
}
void CcdPhysicsEnvironment::setNumIterations(int numIter)
{
m_numIterations = numIter;
}
void CcdPhysicsEnvironment::setDeactivationTime(float dTime)
{
gDeactivationTime = dTime;
}
void CcdPhysicsEnvironment::setDeactivationLinearTreshold(float linTresh)
{
gLinearSleepingTreshold = linTresh;
}
void CcdPhysicsEnvironment::setDeactivationAngularTreshold(float angTresh)
{
gAngularSleepingTreshold = angTresh;
}
void CcdPhysicsEnvironment::setContactBreakingTreshold(float contactBreakingTreshold)
{
gContactBreakingTreshold = contactBreakingTreshold;
}
void CcdPhysicsEnvironment::setCcdMode(int ccdMode)
{
m_ccdMode = ccdMode;
}
void CcdPhysicsEnvironment::setSolverSorConstant(float sor)
{
m_solverInfo.m_sor = sor;
}
void CcdPhysicsEnvironment::setSolverTau(float tau)
{
m_solverInfo.m_tau = tau;
}
void CcdPhysicsEnvironment::setSolverDamping(float damping)
{
m_solverInfo.m_damping = damping;
}
void CcdPhysicsEnvironment::setLinearAirDamping(float damping)
{
gLinearAirDamping = damping;
}
void CcdPhysicsEnvironment::setUseEpa(bool epa)
{
gUseEpa = epa;
}
void CcdPhysicsEnvironment::setSolverType(int solverType)
{
switch (solverType)
{
case 1:
{
if (m_solverType != solverType)
{
m_solver = new SimpleConstraintSolver();
break;
}
}
case 0:
default:
if (m_solverType != solverType)
{
m_solver = new OdeConstraintSolver();
break;
}
};
m_solverType = solverType ;
}
void CcdPhysicsEnvironment::SyncMotionStates(float timeStep)
{
std::vector<CcdPhysicsController*>::iterator i;
//
// synchronize the physics and graphics transformations
//
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
ctrl->SynchronizeMotionStates(timeStep);
}
}
void CcdPhysicsEnvironment::setGravity(float x,float y,float z)
{
m_gravity = SimdVector3(x,y,z);
std::vector<CcdPhysicsController*>::iterator i;
//todo: review this gravity stuff
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
ctrl->GetRigidBody()->setGravity(m_gravity);
}
}
#ifdef NEW_BULLET_VEHICLE_SUPPORT
class DefaultVehicleRaycaster : public VehicleRaycaster
{
CcdPhysicsEnvironment* m_physEnv;
PHY_IPhysicsController* m_chassis;
public:
DefaultVehicleRaycaster(CcdPhysicsEnvironment* physEnv,PHY_IPhysicsController* chassis):
m_physEnv(physEnv),
m_chassis(chassis)
{
}
/* struct VehicleRaycasterResult
{
VehicleRaycasterResult() :m_distFraction(-1.f){};
SimdVector3 m_hitPointInWorld;
SimdVector3 m_hitNormalInWorld;
SimdScalar m_distFraction;
};
*/
virtual void* CastRay(const SimdVector3& from,const SimdVector3& to, VehicleRaycasterResult& result)
{
float hit[3];
float normal[3];
PHY_IPhysicsController* ignore = m_chassis;
void* hitObject = m_physEnv->rayTest(ignore,from.x(),from.y(),from.z(),to.x(),to.y(),to.z(),hit[0],hit[1],hit[2],normal[0],normal[1],normal[2]);
if (hitObject)
{
result.m_hitPointInWorld[0] = hit[0];
result.m_hitPointInWorld[1] = hit[1];
result.m_hitPointInWorld[2] = hit[2];
result.m_hitNormalInWorld[0] = normal[0];
result.m_hitNormalInWorld[1] = normal[1];
result.m_hitNormalInWorld[2] = normal[2];
result.m_hitNormalInWorld.normalize();
//calc fraction? or put it in the interface?
//calc for now
result.m_distFraction = (result.m_hitPointInWorld-from).length() / (to-from).length();
//some safety for 'explosion' due to sudden penetration of the full 'ray'
/* if (result.m_distFraction<0.1)
{
printf("Vehicle Raycast: avoided instability due to penetration. Consider moving the connection points deeper inside vehicle chassis");
result.m_distFraction = 1.f;
hitObject = 0;
}
*/
/* if (result.m_distFraction>1.)
{
printf("Vehicle Raycast: avoided instability 1Consider moving the connection points deeper inside vehicle chassis");
result.m_distFraction = 1.f;
hitObject = 0;
}
*/
}
//?
return hitObject;
}
};
#endif //NEW_BULLET_VEHICLE_SUPPORT
static int gConstraintUid = 1;
int CcdPhysicsEnvironment::createConstraint(class PHY_IPhysicsController* ctrl0,class PHY_IPhysicsController* ctrl1,PHY_ConstraintType type,
float pivotX,float pivotY,float pivotZ,
float axisX,float axisY,float axisZ)
{
CcdPhysicsController* c0 = (CcdPhysicsController*)ctrl0;
CcdPhysicsController* c1 = (CcdPhysicsController*)ctrl1;
RigidBody* rb0 = c0 ? c0->GetRigidBody() : 0;
RigidBody* rb1 = c1 ? c1->GetRigidBody() : 0;
ASSERT(rb0);
SimdVector3 pivotInA(pivotX,pivotY,pivotZ);
SimdVector3 pivotInB = rb1 ? rb1->getCenterOfMassTransform().inverse()(rb0->getCenterOfMassTransform()(pivotInA)) : pivotInA;
SimdVector3 axisInA(axisX,axisY,axisZ);
SimdVector3 axisInB = rb1 ?
(rb1->getCenterOfMassTransform().getBasis().inverse()*(rb0->getCenterOfMassTransform().getBasis() * -axisInA)) :
rb0->getCenterOfMassTransform().getBasis() * -axisInA;
switch (type)
{
case PHY_POINT2POINT_CONSTRAINT:
{
Point2PointConstraint* p2p = 0;
if (rb1)
{
p2p = new Point2PointConstraint(*rb0,
*rb1,pivotInA,pivotInB);
} else
{
p2p = new Point2PointConstraint(*rb0,
pivotInA);
}
m_constraints.push_back(p2p);
p2p->SetUserConstraintId(gConstraintUid++);
p2p->SetUserConstraintType(type);
//64 bit systems can't cast pointer to int. could use size_t instead.
return p2p->GetUserConstraintId();
break;
}
case PHY_LINEHINGE_CONSTRAINT:
{
HingeConstraint* hinge = 0;
if (rb1)
{
hinge = new HingeConstraint(
*rb0,
*rb1,pivotInA,pivotInB,axisInA,axisInB);
} else
{
hinge = new HingeConstraint(*rb0,
pivotInA,axisInA);
}
m_constraints.push_back(hinge);
hinge->SetUserConstraintId(gConstraintUid++);
hinge->SetUserConstraintType(type);
//64 bit systems can't cast pointer to int. could use size_t instead.
return hinge->GetUserConstraintId();
break;
}
#ifdef NEW_BULLET_VEHICLE_SUPPORT
case PHY_VEHICLE_CONSTRAINT:
{
RaycastVehicle::VehicleTuning* tuning = new RaycastVehicle::VehicleTuning();
RigidBody* chassis = rb0;
DefaultVehicleRaycaster* raycaster = new DefaultVehicleRaycaster(this,ctrl0);
RaycastVehicle* vehicle = new RaycastVehicle(*tuning,chassis,raycaster);
WrapperVehicle* wrapperVehicle = new WrapperVehicle(vehicle,ctrl0);
m_wrapperVehicles.push_back(wrapperVehicle);
vehicle->SetUserConstraintId(gConstraintUid++);
vehicle->SetUserConstraintType(type);
return vehicle->GetUserConstraintId();
break;
};
#endif //NEW_BULLET_VEHICLE_SUPPORT
default:
{
}
};
//RigidBody& rbA,RigidBody& rbB, const SimdVector3& pivotInA,const SimdVector3& pivotInB
return 0;
}
void CcdPhysicsEnvironment::removeConstraint(int constraintId)
{
std::vector<TypedConstraint*>::iterator i;
for (i=m_constraints.begin();
!(i==m_constraints.end()); i++)
{
TypedConstraint* constraint = (*i);
if (constraint->GetUserConstraintId() == constraintId)
{
std::swap(*i, m_constraints.back());
m_constraints.pop_back();
break;
}
}
}
PHY_IPhysicsController* CcdPhysicsEnvironment::rayTest(PHY_IPhysicsController* ignoreClient, float fromX,float fromY,float fromZ, float toX,float toY,float toZ,
float& hitX,float& hitY,float& hitZ,float& normalX,float& normalY,float& normalZ)
{
float minFraction = 1.f;
SimdTransform rayFromTrans,rayToTrans;
rayFromTrans.setIdentity();
SimdVector3 rayFrom(fromX,fromY,fromZ);
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
SimdVector3 rayTo(toX,toY,toZ);
rayToTrans.setOrigin(rayTo);
//do culling based on aabb (rayFrom/rayTo)
SimdVector3 rayAabbMin = rayFrom;
SimdVector3 rayAabbMax = rayFrom;
rayAabbMin.setMin(rayTo);
rayAabbMax.setMax(rayTo);
CcdPhysicsController* nearestHit = 0;
std::vector<CcdPhysicsController*>::iterator i;
SphereShape pointShape(0.0f);
/// brute force go over all objects. Once there is a broadphase, use that, or
/// add a raycast against aabb first.
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
if (ctrl == ignoreClient)
continue;
RigidBody* body = ctrl->GetRigidBody();
SimdVector3 bodyAabbMin,bodyAabbMax;
body->getAabb(bodyAabbMin,bodyAabbMax);
//check aabb overlap
if (TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,bodyAabbMin,bodyAabbMax))
{
if (body->GetCollisionShape()->IsConvex())
{
ConvexCast::CastResult rayResult;
rayResult.m_fraction = 1.f;
ConvexShape* convexShape = (ConvexShape*) body->GetCollisionShape();
VoronoiSimplexSolver simplexSolver;
SubsimplexConvexCast convexCaster(&pointShape,convexShape,&simplexSolver);
//GjkConvexCast convexCaster(&pointShape,convexShape,&simplexSolver);
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,body->getCenterOfMassTransform(),body->getCenterOfMassTransform(),rayResult))
{
//add hit
if (rayResult.m_normal.length2() > 0.0001f)
{
rayResult.m_normal.normalize();
if (rayResult.m_fraction < minFraction)
{
minFraction = rayResult.m_fraction;
nearestHit = ctrl;
normalX = rayResult.m_normal.getX();
normalY = rayResult.m_normal.getY();
normalZ = rayResult.m_normal.getZ();
SimdVector3 hitWorld;
hitWorld.setInterpolate3(rayFromTrans.getOrigin(),rayToTrans.getOrigin(),rayResult.m_fraction);
hitX = hitWorld.getX();
hitY = hitWorld.getY();
hitZ = hitWorld.getZ();
}
}
}
}
else
{
if (body->GetCollisionShape()->IsConcave())
{
TriangleMeshShape* triangleMesh = (TriangleMeshShape*)body->GetCollisionShape();
SimdTransform worldToBody = body->getCenterOfMassTransform().inverse();
SimdVector3 rayFromLocal = worldToBody * rayFromTrans.getOrigin();
SimdVector3 rayToLocal = worldToBody * rayToTrans.getOrigin();
RaycastCallback rcb(rayFromLocal,rayToLocal);
rcb.m_hitFraction = minFraction;
SimdVector3 rayAabbMinLocal = rayFromLocal;
rayAabbMinLocal.setMin(rayToLocal);
SimdVector3 rayAabbMaxLocal = rayFromLocal;
rayAabbMaxLocal.setMax(rayToLocal);
triangleMesh->ProcessAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal);
if (rcb.m_hitFound)
{
nearestHit = ctrl;
minFraction = rcb.m_hitFraction;
SimdVector3 hitNormalWorld = body->getCenterOfMassTransform().getBasis()*rcb.m_hitNormalLocal;
hitNormalWorld.normalize();
normalX = hitNormalWorld.getX();
normalY = hitNormalWorld.getY();
normalZ = hitNormalWorld.getZ();
SimdVector3 hitWorld;
hitWorld.setInterpolate3(rayFromTrans.getOrigin(),rayToTrans.getOrigin(),rcb.m_hitFraction);
hitX = hitWorld.getX();
hitY = hitWorld.getY();
hitZ = hitWorld.getZ();
}
}
}
}
}
return nearestHit;
}
int CcdPhysicsEnvironment::getNumContactPoints()
{
return 0;
}
void CcdPhysicsEnvironment::getContactPoint(int i,float& hitX,float& hitY,float& hitZ,float& normalX,float& normalY,float& normalZ)
{
}
BroadphaseInterface* CcdPhysicsEnvironment::GetBroadphase()
{
return m_collisionWorld->GetBroadphase();
}
const CollisionDispatcher* CcdPhysicsEnvironment::GetDispatcher() const
{
return m_collisionWorld->GetDispatcher();
}
CollisionDispatcher* CcdPhysicsEnvironment::GetDispatcher()
{
return m_collisionWorld->GetDispatcher();
}
CcdPhysicsEnvironment::~CcdPhysicsEnvironment()
{
#ifdef NEW_BULLET_VEHICLE_SUPPORT
m_wrapperVehicles.clear();
#endif //NEW_BULLET_VEHICLE_SUPPORT
//m_broadphase->DestroyScene();
//delete broadphase ? release reference on broadphase ?
//first delete scene, then dispatcher, because pairs have to release manifolds on the dispatcher
//delete m_dispatcher;
delete m_collisionWorld;
}
int CcdPhysicsEnvironment::GetNumControllers()
{
return m_controllers.size();
}
CcdPhysicsController* CcdPhysicsEnvironment::GetPhysicsController( int index)
{
return m_controllers[index];
}
int CcdPhysicsEnvironment::GetNumManifolds() const
{
return GetDispatcher()->GetNumManifolds();
}
const PersistentManifold* CcdPhysicsEnvironment::GetManifold(int index) const
{
return GetDispatcher()->GetManifoldByIndexInternal(index);
}
TypedConstraint* CcdPhysicsEnvironment::getConstraintById(int constraintId)
{
int numConstraint = m_constraints.size();
int i;
for (i=0;i<numConstraint;i++)
{
TypedConstraint* constraint = m_constraints[i];
if (constraint->GetUserConstraintId()==constraintId)
{
return constraint;
}
}
return 0;
}
#ifdef NEW_BULLET_VEHICLE_SUPPORT
//complex constraint for vehicles
PHY_IVehicle* CcdPhysicsEnvironment::getVehicleConstraint(int constraintId)
{
int i;
int numVehicles = m_wrapperVehicles.size();
for (i=0;i<numVehicles;i++)
{
WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
if (wrapperVehicle->GetVehicle()->GetUserConstraintId() == constraintId)
return wrapperVehicle;
}
return 0;
}
#endif //NEW_BULLET_VEHICLE_SUPPORT