blender/intern/cycles/kernel/osl/nodes/stdosl.h

480 lines
15 KiB
C
Raw Normal View History

/////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Sony Pictures Imageworks nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////
#ifndef CCL_STDOSL_H
#define CCL_STDOSL_H
#ifndef M_PI
#define M_PI 3.1415926535897932 /* pi */
#define M_PI_2 1.5707963267948966 /* pi/2 */
#define M_PI_4 0.7853981633974483 /* pi/4 */
#define M_2_PI 0.6366197723675813 /* 2/pi */
#define M_2_SQRTPI 1.1283791670955126 /* 2/sqrt(pi) */
#define M_E 2.7182818284590452 /* e (Euler's number) */
#define M_LN2 0.6931471805599453 /* ln(2) */
#define M_LN10 2.3025850929940457 /* ln(10) */
#define M_LOG2E 1.4426950408889634 /* log_2(e) */
#define M_LOG10E 0.4342944819032518 /* log_10(e) */
#define M_SQRT2 1.4142135623730950 /* sqrt(2) */
#define M_SQRT1_2 0.7071067811865475 /* 1/sqrt(2) */
#endif
// Declaration of built-in functions and closures
#define BUILTIN [[ int builtin = 1 ]]
#define BUILTIN_DERIV [[ int builtin = 1, int deriv = 1 ]]
#define PERCOMP1(name) \
normal name (normal x) BUILTIN; \
vector name (vector x) BUILTIN; \
point name (point x) BUILTIN; \
color name (color x) BUILTIN; \
float name (float x) BUILTIN;
#define PERCOMP2(name) \
normal name (normal x, normal y) BUILTIN; \
vector name (vector x, vector y) BUILTIN; \
point name (point x, point y) BUILTIN; \
color name (color x, color y) BUILTIN; \
float name (float x, float y) BUILTIN;
#define PERCOMP2F(name) \
normal name (normal x, float y) BUILTIN; \
vector name (vector x, float y) BUILTIN; \
point name (point x, float y) BUILTIN; \
color name (color x, float y) BUILTIN; \
float name (float x, float y) BUILTIN;
// Basic math
normal degrees (normal x) { return x*(180.0/M_PI); }
vector degrees (vector x) { return x*(180.0/M_PI); }
point degrees (point x) { return x*(180.0/M_PI); }
color degrees (color x) { return x*(180.0/M_PI); }
float degrees (float x) { return x*(180.0/M_PI); }
normal radians (normal x) { return x*(M_PI/180.0); }
vector radians (vector x) { return x*(M_PI/180.0); }
point radians (point x) { return x*(M_PI/180.0); }
color radians (color x) { return x*(M_PI/180.0); }
float radians (float x) { return x*(M_PI/180.0); }
PERCOMP1 (cos)
PERCOMP1 (sin)
PERCOMP1 (tan)
PERCOMP1 (acos)
PERCOMP1 (asin)
PERCOMP1 (atan)
PERCOMP2 (atan2)
PERCOMP1 (cosh)
PERCOMP1 (sinh)
PERCOMP1 (tanh)
PERCOMP2F (pow)
PERCOMP1 (exp)
PERCOMP1 (exp2)
PERCOMP1 (expm1)
PERCOMP1 (log)
point log (point a, float b) { return log(a)/log(b); }
vector log (vector a, float b) { return log(a)/log(b); }
color log (color a, float b) { return log(a)/log(b); }
float log (float a, float b) { return log(a)/log(b); }
PERCOMP1 (log2)
PERCOMP1 (log10)
PERCOMP1 (logb)
PERCOMP1 (sqrt)
PERCOMP1 (inversesqrt)
float hypot (float a, float b) { return sqrt (a*a + b*b); }
float hypot (float a, float b, float c) { return sqrt (a*a + b*b + c*c); }
PERCOMP1 (abs)
int abs (int x) BUILTIN;
PERCOMP1 (fabs)
int fabs (int x) BUILTIN;
PERCOMP1 (sign)
PERCOMP1 (floor)
PERCOMP1 (ceil)
PERCOMP1 (round)
PERCOMP1 (trunc)
PERCOMP2 (fmod)
PERCOMP2F (fmod)
PERCOMP2 (mod)
PERCOMP2F (mod)
int mod (int x, int y) BUILTIN;
PERCOMP2 (min)
PERCOMP2 (max)
normal clamp (normal x, normal minval, normal maxval) { return max(min(x,maxval),minval); }
vector clamp (vector x, vector minval, vector maxval) { return max(min(x,maxval),minval); }
point clamp (point x, point minval, point maxval) { return max(min(x,maxval),minval); }
color clamp (color x, color minval, color maxval) { return max(min(x,maxval),minval); }
float clamp (float x, float minval, float maxval) { return max(min(x,maxval),minval); }
//normal clamp (normal x, normal minval, normal maxval) BUILTIN;
//vector clamp (vector x, vector minval, vector maxval) BUILTIN;
//point clamp (point x, point minval, point maxval) BUILTIN;
//color clamp (color x, color minval, color maxval) BUILTIN;
//float clamp (float x, float minval, float maxval) BUILTIN;
normal mix (normal x, normal y, normal a) { return x*(1-a) + y*a; }
normal mix (normal x, normal y, float a) { return x*(1-a) + y*a; }
vector mix (vector x, vector y, vector a) { return x*(1-a) + y*a; }
vector mix (vector x, vector y, float a) { return x*(1-a) + y*a; }
point mix (point x, point y, point a) { return x*(1-a) + y*a; }
point mix (point x, point y, float a) { return x*(1-a) + y*a; }
color mix (color x, color y, color a) { return x*(1-a) + y*a; }
color mix (color x, color y, float a) { return x*(1-a) + y*a; }
float mix (float x, float y, float a) { return x*(1-a) + y*a; }
int isnan (float x) BUILTIN;
int isinf (float x) BUILTIN;
int isfinite (float x) BUILTIN;
float erf (float x) BUILTIN;
float erfc (float x) BUILTIN;
// Vector functions
vector cross (vector a, vector b) BUILTIN;
float dot (vector a, vector b) BUILTIN;
float length (vector v) BUILTIN;
float distance (point a, point b) BUILTIN;
float distance (point a, point b, point q) BUILTIN;
normal normalize (normal v) BUILTIN;
vector normalize (vector v) BUILTIN;
vector faceforward (vector N, vector I, vector Nref) BUILTIN;
vector faceforward (vector N, vector I) BUILTIN;
vector reflect (vector I, vector N) { return I - 2*dot(N,I)*N; }
2012-06-04 22:44:58 +00:00
vector refract(vector I, vector N, float eta) {
float IdotN = dot(I, N);
float k = 1 - eta * eta * (1 - IdotN * IdotN);
return (k < 0) ? vector(0, 0, 0) : (eta * I - N * (eta * IdotN + sqrt(k)));
}
2012-06-04 22:44:58 +00:00
void fresnel(vector I, normal N, float eta,
output float Kr, output float Kt,
output vector R, output vector T)
{
2012-06-04 22:44:58 +00:00
float sqr(float x) {
return x * x;
}
float c = dot(I, N);
if (c < 0)
c = -c;
R = reflect(I, N);
float g = 1.0 / sqr(eta) - 1.0 + c * c;
if (g >= 0.0) {
g = sqrt(g);
float beta = g - c;
float F = (c * (g + c) - 1.0) / (c * beta + 1.0);
F = 0.5 * (1.0 + sqr(F));
F *= sqr(beta / (g + c));
Kr = F;
Kt = (1.0 - Kr) * eta * eta;
// OPT: the following recomputes some of the above values, but it
// gives us the same result as if the shader-writer called refract()
T = refract(I, N, eta);
}
else {
// total internal reflection
Kr = 1.0;
Kt = 0.0;
T = vector(0, 0, 0);
}
#undef sqr
}
2012-06-04 22:44:58 +00:00
void fresnel(vector I, normal N, float eta,
output float Kr, output float Kt)
{
2012-06-04 22:44:58 +00:00
vector R, T;
fresnel(I, N, eta, Kr, Kt, R, T);
}
2012-06-04 22:44:58 +00:00
point rotate(point q, float angle, point a, point b) BUILTIN;
2012-06-04 22:44:58 +00:00
normal transform(matrix Mto, normal p) BUILTIN;
vector transform(matrix Mto, vector p) BUILTIN;
point transform(matrix Mto, point p) BUILTIN;
// Implementation of transform-with-named-space in terms of matrices:
2012-06-04 22:44:58 +00:00
point transform(string tospace, point x)
{
2012-06-04 22:44:58 +00:00
return transform(matrix("common", tospace), x);
}
2012-06-04 22:44:58 +00:00
point transform(string fromspace, string tospace, point x)
{
2012-06-04 22:44:58 +00:00
return transform(matrix(fromspace, tospace), x);
}
2012-06-04 22:44:58 +00:00
vector transform(string tospace, vector x)
{
2012-06-04 22:44:58 +00:00
return transform(matrix("common", tospace), x);
}
2012-06-04 22:44:58 +00:00
vector transform(string fromspace, string tospace, vector x)
{
2012-06-04 22:44:58 +00:00
return transform(matrix(fromspace, tospace), x);
}
2012-06-04 22:44:58 +00:00
normal transform(string tospace, normal x)
{
2012-06-04 22:44:58 +00:00
return transform(matrix("common", tospace), x);
}
2012-06-04 22:44:58 +00:00
normal transform(string fromspace, string tospace, normal x)
{
2012-06-04 22:44:58 +00:00
return transform(matrix(fromspace, tospace), x);
}
2012-06-04 22:44:58 +00:00
float transformu(string tounits, float x) BUILTIN;
float transformu(string fromunits, string tounits, float x) BUILTIN;
// Color functions
2012-06-04 22:44:58 +00:00
float luminance(color c) {
return dot((vector)c, vector(0.2126, 0.7152, 0.0722));
}
2012-06-04 22:44:58 +00:00
color transformc(string to, color x)
{
2012-06-04 22:44:58 +00:00
color rgb_to_hsv(color rgb) { // See Foley & van Dam
float r = rgb[0], g = rgb[1], b = rgb[2];
float mincomp = min(r, min(g, b));
float maxcomp = max(r, max(g, b));
float delta = maxcomp - mincomp; // chroma
float h, s, v;
v = maxcomp;
if (maxcomp > 0)
s = delta / maxcomp;
else s = 0;
if (s <= 0)
h = 0;
else {
if (r >= maxcomp) h = (g - b) / delta;
else if (g >= maxcomp) h = 2 + (b - r) / delta;
else h = 4 + (r - g) / delta;
h /= 6;
if (h < 0)
h += 1;
}
return color(h, s, v);
}
color rgb_to_hsl(color rgb) { // See Foley & van Dam
// First convert rgb to hsv, then to hsl
float minval = min(rgb[0], min(rgb[1], rgb[2]));
color hsv = rgb_to_hsv(rgb);
float maxval = hsv[2]; // v == maxval
float h = hsv[0], s, l = (minval + maxval) / 2;
if (minval == maxval)
s = 0; // special 'achromatic' case, hue is 0
else if (l <= 0.5)
s = (maxval - minval) / (maxval + minval);
else
s = (maxval - minval) / (2 - maxval - minval);
return color(h, s, l);
}
color r;
if (to == "rgb" || to == "RGB")
r = x;
else if (to == "hsv")
r = rgb_to_hsv(x);
else if (to == "hsl")
r = rgb_to_hsl(x);
else if (to == "YIQ")
r = color(dot(vector(0.299, 0.587, 0.114), (vector)x),
dot(vector(0.596, -0.275, -0.321), (vector)x),
dot(vector(0.212, -0.523, 0.311), (vector)x));
else if (to == "xyz")
r = color(dot(vector(0.412453, 0.357580, 0.180423), (vector)x),
dot(vector(0.212671, 0.715160, 0.072169), (vector)x),
dot(vector(0.019334, 0.119193, 0.950227), (vector)x));
else {
error("Unknown color space \"%s\"", to);
r = x;
}
return r;
}
2012-06-04 22:44:58 +00:00
color transformc(string from, string to, color x)
{
2012-06-04 22:44:58 +00:00
color hsv_to_rgb(color c) { // Reference: Foley & van Dam
float h = c[0], s = c[1], v = c[2];
color r;
if (s < 0.0001) {
r = v;
}
else {
h = 6 * (h - floor(h)); // expand to [0..6)
int hi = (int)h;
float f = h - hi;
float p = v * (1 - s);
float q = v * (1 - s * f);
float t = v * (1 - s * (1 - f));
if (hi == 0) r = color(v, t, p);
else if (hi == 1) r = color(q, v, p);
else if (hi == 2) r = color(p, v, t);
else if (hi == 3) r = color(p, q, v);
else if (hi == 4) r = color(t, p, v);
else r = color(v, p, q);
}
return r;
}
color hsl_to_rgb(color c) {
float h = c[0], s = c[1], l = c[2];
// Easiest to convert hsl -> hsv, then hsv -> RGB (per Foley & van Dam)
float v = (l <= 0.5) ? (l * (1 + s)) : (l * (1 - s) + s);
color r;
if (v <= 0) {
r = 0;
}
else {
float min = 2 * l - v;
s = (v - min) / v;
r = hsv_to_rgb(color(h, s, v));
}
return r;
}
color r;
if (from == "rgb" || from == "RGB")
r = x;
else if (from == "hsv")
r = hsv_to_rgb(x);
else if (from == "hsl")
r = hsl_to_rgb(x);
else if (from == "YIQ")
r = color(dot(vector(1, 0.9557, 0.6199), (vector)x),
dot(vector(1, -0.2716, -0.6469), (vector)x),
dot(vector(1, -1.1082, 1.7051), (vector)x));
else if (from == "xyz")
r = color(dot(vector(3.240479, -1.537150, -0.498535), (vector)x),
dot(vector(-0.969256, 1.875991, 0.041556), (vector)x),
dot(vector(0.055648, -0.204043, 1.057311), (vector)x));
else {
error("Unknown color space \"%s\"", to);
r = x;
}
return transformc(to, r);
}
// Matrix functions
2012-06-04 22:44:58 +00:00
float determinant(matrix m) BUILTIN;
matrix transpose(matrix m) BUILTIN;
// Pattern generation
2012-06-04 22:44:58 +00:00
float step(float edge, float x) BUILTIN;
color step(color edge, color x) BUILTIN;
point step(point edge, point x) BUILTIN;
vector step(vector edge, vector x) BUILTIN;
normal step(normal edge, normal x) BUILTIN;
float smoothstep(float edge0, float edge1, float x) BUILTIN;
// Derivatives and area operators
// Displacement functions
// String functions
2012-06-04 22:44:58 +00:00
int strlen(string s) BUILTIN;
int startswith(string s, string prefix) BUILTIN;
int endswith(string s, string suffix) BUILTIN;
string substr(string s, int start, int len) BUILTIN;
string substr(string s, int start) {
return substr(s, start, strlen(s));
}
// Define concat in terms of shorter concat
2012-06-04 22:44:58 +00:00
string concat(string a, string b, string c) {
return concat(concat(a, b), c);
}
2012-06-04 22:44:58 +00:00
string concat(string a, string b, string c, string d) {
return concat(concat(a, b, c), d);
}
2012-06-04 22:44:58 +00:00
string concat(string a, string b, string c, string d, string e) {
return concat(concat(a, b, c, d), e);
}
2012-06-04 22:44:58 +00:00
string concat(string a, string b, string c, string d, string e, string f) {
return concat(concat(a, b, c, d, e), f);
}
// Texture
// Closures
closure color diffuse(normal N) BUILTIN;
closure color oren_nayar(normal N, float sigma) BUILTIN;
closure color translucent(normal N) BUILTIN;
closure color reflection(normal N, float eta) BUILTIN;
2012-06-04 22:44:58 +00:00
closure color reflection(normal N) { return reflection(N, 0.0); }
closure color refraction(normal N, float eta) BUILTIN;
closure color dielectric(normal N, float eta) BUILTIN;
closure color transparent() BUILTIN;
closure color microfacet_ggx(normal N, float ag) BUILTIN;
closure color microfacet_ggx_refraction(normal N, float ag, float eta) BUILTIN;
closure color microfacet_beckmann(normal N, float ab) BUILTIN;
closure color microfacet_beckmann_refraction(normal N, float ab, float eta) BUILTIN;
2012-06-04 22:44:58 +00:00
closure color ward(normal N, vector T, float ax, float ay) BUILTIN;
closure color ashikhmin_velvet(normal N, float sigma) BUILTIN;
closure color westin_backscatter(normal N, float roughness) BUILTIN;
closure color westin_sheen(normal N, float edginess) BUILTIN;
closure color bssrdf_cubic(color radius) BUILTIN;
closure color emission(float inner_angle, float outer_angle) BUILTIN;
closure color emission(float outer_angle) BUILTIN;
closure color emission() BUILTIN;
closure color debug(string tag) BUILTIN;
closure color background() BUILTIN;
closure color holdout() BUILTIN;
closure color subsurface(float eta, float g, float mfp, float albedo) BUILTIN;
// Renderer state
2012-06-04 22:44:58 +00:00
int raytype(string typename) BUILTIN;
#undef BUILTIN
#undef BUILTIN_DERIV
#undef PERCOMP1
#undef PERCOMP2
#undef PERCOMP2F
#endif /* CCL_STDOSL_H */