blender/intern/cycles/kernel/split/kernel_lamp_emission.h

180 lines
7.3 KiB
C
Raw Normal View History

2015-05-09 14:34:30 +00:00
/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_split_common.h"
2015-05-09 14:34:30 +00:00
/* Note on kernel_lamp_emission
2015-05-09 14:34:30 +00:00
* This is the 3rd kernel in the ray-tracing logic. This is the second of the
* path-iteration kernels. This kernel takes care of the indirect lamp emission logic.
* This kernel operates on QUEUE_ACTIVE_AND_REGENERATED_RAYS. It processes rays of state RAY_ACTIVE
* and RAY_HIT_BACKGROUND.
* We will empty QUEUE_ACTIVE_AND_REGENERATED_RAYS queue in this kernel.
* The input/output of the kernel is as follows,
* Throughput_coop ------------------------------------|--- kernel_lamp_emission --|--- PathRadiance_coop
* Ray_coop -------------------------------------------| |--- Queue_data(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
* PathState_coop -------------------------------------| |--- Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
* kg (globals + data) --------------------------------| |
* Intersection_coop ----------------------------------| |
* ray_state ------------------------------------------| |
* Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) -----| |
* Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ----| |
* queuesize ------------------------------------------| |
* use_queues_flag ------------------------------------| |
* sw -------------------------------------------------| |
* sh -------------------------------------------------| |
* parallel_samples -----------------------------------| |
2015-05-09 14:34:30 +00:00
*
* note : shader_data is neither input nor output. Its just filled and consumed in the same, kernel_lamp_emission, kernel.
2015-05-09 14:34:30 +00:00
*/
ccl_device void kernel_lamp_emission(
ccl_global char *globals,
ccl_constant KernelData *data,
ccl_global char *shader_data, /* Required for lamp emission */
ccl_global float3 *throughput_coop, /* Required for lamp emission */
PathRadiance *PathRadiance_coop, /* Required for lamp emission */
ccl_global Ray *Ray_coop, /* Required for lamp emission */
ccl_global PathState *PathState_coop, /* Required for lamp emission */
Intersection *Intersection_coop, /* Required for lamp emission */
ccl_global char *ray_state, /* Denotes the state of each ray */
int sw, int sh,
ccl_global char *use_queues_flag, /* Used to decide if this kernel should use
* queues to fetch ray index
*/
int parallel_samples, /* Number of samples to be processed in parallel */
int ray_index)
2015-05-09 14:34:30 +00:00
{
2015-05-26 19:13:32 +00:00
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE) ||
IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND))
{
2015-05-09 14:34:30 +00:00
KernelGlobals *kg = (KernelGlobals *)globals;
ShaderData *sd = (ShaderData *)shader_data;
PathRadiance *L = &PathRadiance_coop[ray_index];
float3 throughput = throughput_coop[ray_index];
Ray ray = Ray_coop[ray_index];
PathState state = PathState_coop[ray_index];
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray.P - state.ray_t*ray.D;
state.ray_t += Intersection_coop[ray_index].t;
light_ray.D = ray.D;
light_ray.t = state.ray_t;
light_ray.time = ray.time;
light_ray.dD = ray.dD;
light_ray.dP = ray.dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, &state, &light_ray, &emission, sd)) {
path_radiance_accum_emission(L, throughput, emission, state.bounce);
}
}
2015-05-26 19:13:32 +00:00
#endif /* __LAMP_MIS__ */
2015-05-09 14:34:30 +00:00
/* __VOLUME__ feature is disabled */
#if 0
#ifdef __VOLUME__
/* volume attenuation, emission, scatter */
if(state.volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
#ifdef __VOLUME_DECOUPLED__
int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
ShaderData volume_sd;
shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
kernel_volume_decoupled_record(kg, &state,
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
bool all = false;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
throughput, &state, &L, 1.0f, all, &volume_ray, &volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
&state, &volume_ray, &volume_sd, &throughput,
rphase, rscatter, &volume_segment, NULL, true);
}
if(result != VOLUME_PATH_SCATTERED)
throughput *= volume_segment.accum_transmittance;
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray))
continue;
else
break;
}
}
else
2015-05-26 19:13:32 +00:00
#endif /* __VOLUME_DECOUPLED__ */
2015-05-09 14:34:30 +00:00
{
/* integrate along volume segment with distance sampling */
ShaderData volume_sd;
VolumeIntegrateResult result = kernel_volume_integrate(
kg, &state, &volume_sd, &volume_ray, &L, &throughput, rng, heterogeneous);
#ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, &L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray))
continue;
else
break;
}
2015-05-26 19:13:32 +00:00
#endif /* __VOLUME_SCATTER__ */
2015-05-09 14:34:30 +00:00
}
}
2015-05-26 19:13:32 +00:00
#endif /* __VOLUME__ */
2015-05-09 14:34:30 +00:00
#endif
}
}