blender/extern/bullet/Bullet/NarrowPhaseCollision/ContinuousConvexCollision.cpp

192 lines
4.9 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "ContinuousConvexCollision.h"
#include "CollisionShapes/ConvexShape.h"
#include "CollisionShapes/MinkowskiSumShape.h"
#include "NarrowPhaseCollision/SimplexSolverInterface.h"
#include "SimdTransformUtil.h"
#include "CollisionShapes/SphereShape.h"
#include "GjkPairDetector.h"
#include "PointCollector.h"
ContinuousConvexCollision::ContinuousConvexCollision ( ConvexShape* convexA,ConvexShape* convexB,SimplexSolverInterface* simplexSolver, ConvexPenetrationDepthSolver* penetrationDepthSolver)
:m_simplexSolver(simplexSolver),
m_penetrationDepthSolver(penetrationDepthSolver),
m_convexA(convexA),m_convexB(convexB)
{
}
/// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
/// You don't want your game ever to lock-up.
#define MAX_ITERATIONS 1000
bool ContinuousConvexCollision::calcTimeOfImpact(
const SimdTransform& fromA,
const SimdTransform& toA,
const SimdTransform& fromB,
const SimdTransform& toB,
CastResult& result)
{
m_simplexSolver->reset();
/// compute linear and angular velocity for this interval, to interpolate
SimdVector3 linVelA,angVelA,linVelB,angVelB;
SimdTransformUtil::CalculateVelocity(fromA,toA,1.f,linVelA,angVelA);
SimdTransformUtil::CalculateVelocity(fromB,toB,1.f,linVelB,angVelB);
SimdScalar boundingRadiusA = m_convexA->GetAngularMotionDisc();
SimdScalar boundingRadiusB = m_convexB->GetAngularMotionDisc();
SimdScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
float radius = 0.001f;
SimdScalar lambda = 0.f;
SimdVector3 v(1,0,0);
int maxIter = MAX_ITERATIONS;
SimdVector3 n;
n.setValue(0.f,0.f,0.f);
bool hasResult = false;
SimdVector3 c;
float lastLambda = lambda;
float epsilon = 0.001f;
int numIter = 0;
//first solution, using GJK
SimdTransform identityTrans;
identityTrans.setIdentity();
SphereShape raySphere(0.0f);
raySphere.SetMargin(0.f);
// result.DrawCoordSystem(sphereTr);
PointCollector pointCollector1;
{
GjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,m_penetrationDepthSolver);
GjkPairDetector::ClosestPointInput input;
input.m_transformA = fromA;
input.m_transformB = fromB;
gjk.GetClosestPoints(input,pointCollector1);
hasResult = pointCollector1.m_hasResult;
c = pointCollector1.m_pointInWorld;
}
if (hasResult)
{
SimdScalar dist;
dist = pointCollector1.m_distance;
n = pointCollector1.m_normalOnBInWorld;
//not close enough
while (dist > radius)
{
numIter++;
if (numIter > maxIter)
return false; //todo: report a failure
float dLambda = 0.f;
//calculate safe moving fraction from distance / (linear+rotational velocity)
//float clippedDist = GEN_min(angularConservativeRadius,dist);
float clippedDist = dist;
float projectedLinearVelocity = (linVelB-linVelA).dot(n);
dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity);
lambda = lambda + dLambda;
if (lambda > 1.f)
return false;
if (lambda < 0.f)
return false;
//todo: next check with relative epsilon
if (lambda <= lastLambda)
break;
lastLambda = lambda;
//interpolate to next lambda
SimdTransform interpolatedTransA,interpolatedTransB,relativeTrans;
SimdTransformUtil::IntegrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA);
SimdTransformUtil::IntegrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB);
relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
result.DebugDraw( lambda );
PointCollector pointCollector;
GjkPairDetector gjk(m_convexA,m_convexB,m_simplexSolver,m_penetrationDepthSolver);
GjkPairDetector::ClosestPointInput input;
input.m_transformA = interpolatedTransA;
input.m_transformB = interpolatedTransB;
gjk.GetClosestPoints(input,pointCollector);
if (pointCollector.m_hasResult)
{
if (pointCollector.m_distance < 0.f)
{
//degenerate ?!
result.m_fraction = lastLambda;
result.m_normal = n;
return true;
}
c = pointCollector.m_pointInWorld;
dist = pointCollector.m_distance;
} else
{
//??
return false;
}
}
result.m_fraction = lambda;
result.m_normal = n;
return true;
}
return false;
/*
//todo:
//if movement away from normal, discard result
SimdVector3 move = transBLocalTo.getOrigin() - transBLocalFrom.getOrigin();
if (result.m_fraction < 1.f)
{
if (move.dot(result.m_normal) <= 0.f)
{
}
}
*/
}