blender/intern/cycles/kernel/kernel_path.h

291 lines
7.8 KiB
C
Raw Normal View History

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "kernel_differential.h"
#include "kernel_montecarlo.h"
#include "kernel_triangle.h"
#include "kernel_object.h"
#ifdef __QBVH__
#include "kernel_qbvh.h"
#else
#include "kernel_bvh.h"
#endif
#include "kernel_camera.h"
#include "kernel_shader.h"
#include "kernel_light.h"
#include "kernel_emission.h"
#include "kernel_random.h"
CCL_NAMESPACE_BEGIN
#ifdef __MODIFY_TP__
__device float3 path_terminate_modified_throughput(KernelGlobals *kg, __global float3 *buffer, int x, int y, int pass)
{
/* modify throughput to influence path termination probability, to avoid
darker regions receiving fewer samples than lighter regions. also RGB
are weighted differently. proper validation still remains to be done. */
const float3 weights = make_float3(1.0f, 1.33f, 0.66f);
const float3 one = make_float3(1.0f, 1.0f, 1.0f);
const int minpass = 5;
const float minL = 0.1f;
if(pass >= minpass) {
float3 L = buffer[x + y*kernel_data.cam.width];
float3 Lmin = make_float3(minL, minL, minL);
float correct = (float)(pass+1)/(float)pass;
L = film_map(L*correct, pass);
return weights/clamp(L, Lmin, one);
}
return weights;
}
#endif
__device float path_terminate_probability(KernelGlobals *kg, int bounce, const float3 throughput)
{
if(bounce >= kernel_data.integrator.maxbounce)
return 0.0f;
else if(bounce <= kernel_data.integrator.minbounce)
return 1.0f;
return average(throughput);
}
__device int path_flag_from_label(int path_flag, int label)
{
/* reflect/transmit */
if(label & LABEL_REFLECT) {
path_flag |= PATH_RAY_REFLECT;
path_flag &= ~PATH_RAY_TRANSMIT;
}
else {
kernel_assert(label & LABEL_TRANSMIT);
path_flag |= PATH_RAY_TRANSMIT;
path_flag &= ~PATH_RAY_REFLECT;
}
/* diffuse/glossy/singular */
if(label & LABEL_DIFFUSE) {
path_flag |= PATH_RAY_DIFFUSE;
path_flag &= ~(PATH_RAY_GLOSSY|PATH_RAY_SINGULAR);
}
else if(label & LABEL_GLOSSY) {
path_flag |= PATH_RAY_GLOSSY;
path_flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_SINGULAR);
}
else {
kernel_assert(label & (LABEL_SINGULAR|LABEL_STRAIGHT));
path_flag |= PATH_RAY_SINGULAR;
path_flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY);
}
/* ray through transparent is still camera ray */
if(!(label & LABEL_STRAIGHT))
path_flag &= ~PATH_RAY_CAMERA;
return path_flag;
}
__device float4 kernel_path_integrate(KernelGlobals *kg, RNG *rng, int pass, Ray ray, float3 throughput)
{
/* initialize */
float3 L = make_float3(0.0f, 0.0f, 0.0f);
float Ltransparent = 0.0f;
#ifdef __EMISSION__
float ray_pdf = 0.0f;
#endif
int path_flag = PATH_RAY_CAMERA|PATH_RAY_SINGULAR;
int rng_offset = PRNG_BASE_NUM;
/* path iteration */
for(int bounce = 0; ; bounce++, rng_offset += PRNG_BOUNCE_NUM) {
/* intersect scene */
Intersection isect;
if(!scene_intersect(kg, &ray, false, &isect)) {
/* eval background shader if nothing hit */
if(kernel_data.background.transparent && (path_flag & PATH_RAY_CAMERA)) {
Ltransparent += average(throughput);
}
else {
#ifdef __BACKGROUND__
ShaderData sd;
shader_setup_from_background(kg, &sd, &ray);
L += throughput*shader_eval_background(kg, &sd, path_flag);
shader_release(kg, &sd);
#else
L += make_float3(0.8f, 0.8f, 0.8f);
#endif
}
break;
}
/* setup shading */
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_rng(kg, rng, pass, rng_offset + PRNG_BSDF);
shader_eval_surface(kg, &sd, rbsdf, path_flag);
#ifdef __HOLDOUT__
if((sd.flag & SD_HOLDOUT) && (path_flag & PATH_RAY_CAMERA)) {
float3 holdout_weight = shader_holdout_eval(kg, &sd);
if(kernel_data.background.transparent) {
Ltransparent += average(holdout_weight*throughput);
}
else {
ShaderData sd;
shader_setup_from_background(kg, &sd, &ray);
L += holdout_weight*throughput*shader_eval_background(kg, &sd, path_flag);
shader_release(kg, &sd);
}
}
#endif
#ifdef __EMISSION__
/* emission */
if(kernel_data.integrator.use_emission) {
if(sd.flag & SD_EMISSION)
L += throughput*indirect_emission(kg, &sd, isect.t, path_flag, ray_pdf);
/* sample illumination from lights to find path contribution */
if((sd.flag & SD_BSDF_HAS_EVAL) &&
bounce != kernel_data.integrator.maxbounce) {
float light_t = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT);
float light_o = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT_F);
float light_u = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT_U);
float light_v = path_rng(kg, rng, pass, rng_offset + PRNG_LIGHT_V);
Ray light_ray;
float3 light_L;
if(direct_emission(kg, &sd, light_t, light_o, light_u, light_v, &light_ray, &light_L)) {
/* trace shadow ray */
if(!scene_intersect(kg, &light_ray, true, &isect))
L += throughput*light_L;
}
}
}
#endif
/* no BSDF? we can stop here */
if(!(sd.flag & SD_BSDF)) {
path_flag &= ~PATH_RAY_CAMERA;
break;
}
/* sample BSDF */
float bsdf_pdf;
float3 bsdf_eval;
float3 bsdf_omega_in;
differential3 bsdf_domega_in;
float bsdf_u = path_rng(kg, rng, pass, rng_offset + PRNG_BSDF_U);
float bsdf_v = path_rng(kg, rng, pass, rng_offset + PRNG_BSDF_V);
int label;
label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval,
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
shader_release(kg, &sd);
if(bsdf_pdf == 0.0f || is_zero(bsdf_eval)) {
path_flag &= ~PATH_RAY_CAMERA;
break;
}
/* modify throughput */
throughput *= bsdf_eval/bsdf_pdf;
/* set labels */
#ifdef __EMISSION__
ray_pdf = bsdf_pdf;
#endif
path_flag = path_flag_from_label(path_flag, label);
/* path termination */
float probability = path_terminate_probability(kg, bounce, throughput);
float terminate = path_rng(kg, rng, pass, rng_offset + PRNG_TERMINATE);
if(terminate >= probability) {
path_flag &= ~PATH_RAY_CAMERA;
break;
}
throughput /= probability;
/* setup ray */
ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng);
ray.D = bsdf_omega_in;
ray.t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
ray.dP = sd.dP;
ray.dD = bsdf_domega_in;
#endif
}
return make_float4(L.x, L.y, L.z, 1.0f - Ltransparent);
}
__device void kernel_path_trace(KernelGlobals *kg, __global float4 *buffer, __global uint *rng_state, int pass, int x, int y)
{
/* initialize random numbers */
RNG rng;
float filter_u;
float filter_v;
path_rng_init(kg, rng_state, pass, &rng, x, y, &filter_u, &filter_v);
/* sample camera ray */
Ray ray;
float lens_u = path_rng(kg, &rng, pass, PRNG_LENS_U);
float lens_v = path_rng(kg, &rng, pass, PRNG_LENS_V);
camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, &ray);
/* integrate */
#ifdef __MODIFY_TP__
float3 throughput = path_terminate_modified_throughput(kg, buffer, x, y, pass);
float4 L = kernel_path_integrate(kg, &rng, pass, ray, throughput)/throughput;
#else
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
float4 L = kernel_path_integrate(kg, &rng, pass, ray, throughput);
#endif
/* accumulate result in output buffer */
int index = x + y*kernel_data.cam.width;
if(pass == 0)
buffer[index] = L;
else
buffer[index] += L;
path_rng_end(kg, rng_state, rng, x, y);
}
CCL_NAMESPACE_END