blender/intern/cycles/kernel/kernel_triangle.h

276 lines
9.8 KiB
C
Raw Normal View History

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "kernel_projection.h"
CCL_NAMESPACE_BEGIN
/* Point on triangle for Moller-Trumbore triangles */
__device_inline float3 triangle_point_MT(KernelGlobals *kg, int tri_index, float u, float v)
{
/* load triangle vertices */
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, tri_index));
float3 v0 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
float3 v1 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
float3 v2 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
/* compute point */
float t = 1.0f - u - v;
return (u*v0 + v*v1 + t*v2);
}
/* Sample point on triangle */
__device_inline float3 triangle_sample_MT(KernelGlobals *kg, int tri_index, float randu, float randv)
{
/* compute point */
randu = sqrtf(randu);
float u = 1.0f - randu;
float v = randv*randu;
return triangle_point_MT(kg, tri_index, u, v);
}
/* Normal for Moller-Trumbore triangles */
__device_inline float3 triangle_normal_MT(KernelGlobals *kg, int tri_index, int *shader)
{
#if 0
/* load triangle vertices */
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, tri_index));
float3 v0 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
float3 v1 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
float3 v2 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
/* compute normal */
return normalize(cross(v2 - v0, v1 - v0));
#else
float4 Nm = kernel_tex_fetch(__tri_normal, tri_index);
*shader = __float_as_int(Nm.w);
return make_float3(Nm.x, Nm.y, Nm.z);
#endif
}
__device_inline float3 triangle_smooth_normal(KernelGlobals *kg, int tri_index, float u, float v)
{
/* load triangle vertices */
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, tri_index));
float3 n0 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.x)));
float3 n1 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.y)));
float3 n2 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.z)));
return normalize((1.0f - u - v)*n2 + u*n0 + v*n1);
}
__device_inline void triangle_dPdudv(KernelGlobals *kg, float3 *dPdu, float3 *dPdv, int tri)
{
/* fetch triangle vertex coordinates */
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, tri));
float3 p0 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
float3 p1 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
float3 p2 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
/* compute derivatives of P w.r.t. uv */
*dPdu = (p0 - p2);
*dPdv = (p1 - p2);
}
/* attributes */
__device float triangle_attribute_float(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float *dx, float *dy)
{
if(elem == ATTR_ELEMENT_FACE) {
if(dx) *dx = 0.0f;
if(dy) *dy = 0.0f;
return kernel_tex_fetch(__attributes_float, offset + sd->prim);
}
else if(elem == ATTR_ELEMENT_VERTEX) {
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, sd->prim));
float f0 = kernel_tex_fetch(__attributes_float, offset + __float_as_int(tri_vindex.x));
float f1 = kernel_tex_fetch(__attributes_float, offset + __float_as_int(tri_vindex.y));
float f2 = kernel_tex_fetch(__attributes_float, offset + __float_as_int(tri_vindex.z));
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(elem == ATTR_ELEMENT_CORNER) {
int tri = offset + sd->prim*3;
float f0 = kernel_tex_fetch(__attributes_float, tri + 0);
float f1 = kernel_tex_fetch(__attributes_float, tri + 1);
float f2 = kernel_tex_fetch(__attributes_float, tri + 2);
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = 0.0f;
if(dy) *dy = 0.0f;
return 0.0f;
}
}
__device float3 triangle_attribute_float3(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float3 *dx, float3 *dy)
{
if(elem == ATTR_ELEMENT_FACE) {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
return float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + sd->prim));
}
else if(elem == ATTR_ELEMENT_VERTEX) {
float3 tri_vindex = float4_to_float3(kernel_tex_fetch(__tri_vindex, sd->prim));
float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.x)));
float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.y)));
float3 f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.z)));
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(elem == ATTR_ELEMENT_CORNER) {
int tri = offset + sd->prim*3;
float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 0));
float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 1));
float3 f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 2));
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
return make_float3(0.0f, 0.0f, 0.0f);
}
}
/* motion */
__device int triangle_find_attribute(KernelGlobals *kg, ShaderData *sd, uint id)
{
/* find attribute by unique id */
uint attr_offset = sd->object*kernel_data.bvh.attributes_map_stride;
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
while(attr_map.x != id)
attr_map = kernel_tex_fetch(__attributes_map, ++attr_offset);
/* return result */
return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : attr_map.z;
}
__device float4 triangle_motion_vector(KernelGlobals *kg, ShaderData *sd)
{
float3 motion_pre = sd->P, motion_post = sd->P;
/* deformation motion */
int offset_pre = triangle_find_attribute(kg, sd, ATTR_STD_MOTION_PRE);
int offset_post = triangle_find_attribute(kg, sd, ATTR_STD_MOTION_POST);
if(offset_pre != ATTR_STD_NOT_FOUND)
motion_pre = triangle_attribute_float3(kg, sd, ATTR_ELEMENT_VERTEX, offset_pre, NULL, NULL);
if(offset_post != ATTR_STD_NOT_FOUND)
motion_post = triangle_attribute_float3(kg, sd, ATTR_ELEMENT_VERTEX, offset_post, NULL, NULL);
/* object motion. note that depending on the mesh having motion vectors, this
2012-06-09 17:22:52 +00:00
* transformation was set match the world/object space of motion_pre/post */
Transform tfm;
tfm = object_fetch_transform(kg, sd->object, TIME_INVALID, OBJECT_TRANSFORM_MOTION_PRE);
motion_pre = transform_point(&tfm, motion_pre);
tfm = object_fetch_transform(kg, sd->object, TIME_INVALID, OBJECT_TRANSFORM_MOTION_POST);
motion_post = transform_point(&tfm, motion_post);
float3 P;
/* camera motion, for perspective/orthographic motion.pre/post will be a
2012-06-09 17:22:52 +00:00
* world-to-raster matrix, for panorama it's world-to-camera */
if (kernel_data.cam.type != CAMERA_PANORAMA) {
tfm = kernel_data.cam.worldtoraster;
P = transform_perspective(&tfm, sd->P);
tfm = kernel_data.cam.motion.pre;
motion_pre = transform_perspective(&tfm, motion_pre);
tfm = kernel_data.cam.motion.post;
motion_post = transform_perspective(&tfm, motion_post);
}
else {
tfm = kernel_data.cam.worldtocamera;
P = normalize(transform_point(&tfm, sd->P));
P = float2_to_float3(direction_to_panorama(kg, P));
P.x *= kernel_data.cam.width;
P.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion.pre;
motion_pre = normalize(transform_point(&tfm, motion_pre));
motion_pre = float2_to_float3(direction_to_panorama(kg, motion_pre));
motion_pre.x *= kernel_data.cam.width;
motion_pre.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion.post;
motion_post = normalize(transform_point(&tfm, motion_post));
motion_post = float2_to_float3(direction_to_panorama(kg, motion_post));
motion_post.x *= kernel_data.cam.width;
motion_post.y *= kernel_data.cam.height;
}
motion_pre = motion_pre - P;
motion_post = P - motion_post;
return make_float4(motion_pre.x, motion_pre.y, motion_post.x, motion_post.y);
}
__device float3 triangle_uv(KernelGlobals *kg, ShaderData *sd)
{
int offset_uv = triangle_find_attribute(kg, sd, ATTR_STD_UV);
if(offset_uv == ATTR_STD_NOT_FOUND)
return make_float3(0.0f, 0.0f, 0.0f);
float3 uv = triangle_attribute_float3(kg, sd, ATTR_ELEMENT_CORNER, offset_uv, NULL, NULL);
uv.z = 1.0f;
return uv;
}
CCL_NAMESPACE_END