2011-11-07 12:55:18 +00:00
|
|
|
/*
|
|
|
|
Copyright (c) 2008 University of North Carolina at Chapel Hill
|
|
|
|
|
|
|
|
This file is part of SSBA (Simple Sparse Bundle Adjustment).
|
|
|
|
|
|
|
|
SSBA is free software: you can redistribute it and/or modify it under the
|
|
|
|
terms of the GNU Lesser General Public License as published by the Free
|
|
|
|
Software Foundation, either version 3 of the License, or (at your option) any
|
|
|
|
later version.
|
|
|
|
|
|
|
|
SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
|
|
|
details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public License along
|
|
|
|
with SSBA. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "Geometry/v3d_metricbundle.h"
|
|
|
|
|
|
|
|
#if defined(V3DLIB_ENABLE_SUITESPARSE)
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
|
|
|
|
typedef V3D::InlineMatrix<double, 2, 4> Matrix2x4d;
|
|
|
|
typedef V3D::InlineMatrix<double, 4, 2> Matrix4x2d;
|
|
|
|
typedef V3D::InlineMatrix<double, 2, 6> Matrix2x6d;
|
|
|
|
|
|
|
|
} // end namespace <>
|
|
|
|
|
|
|
|
namespace V3D
|
|
|
|
{
|
|
|
|
|
|
|
|
void
|
|
|
|
MetricBundleOptimizerBase::updateParametersA(VectorArray<double> const& deltaAi)
|
|
|
|
{
|
|
|
|
Vector3d T, omega;
|
|
|
|
Matrix3x3d R0, dR;
|
|
|
|
|
|
|
|
for (int i = _nNonvaryingA; i < _nParametersA; ++i)
|
|
|
|
{
|
|
|
|
T = _cams[i].getTranslation();
|
|
|
|
T[0] += deltaAi[i][0];
|
|
|
|
T[1] += deltaAi[i][1];
|
|
|
|
T[2] += deltaAi[i][2];
|
|
|
|
_cams[i].setTranslation(T);
|
|
|
|
|
|
|
|
// Create incremental rotation using Rodriguez formula.
|
|
|
|
R0 = _cams[i].getRotation();
|
|
|
|
omega[0] = deltaAi[i][3];
|
|
|
|
omega[1] = deltaAi[i][4];
|
|
|
|
omega[2] = deltaAi[i][5];
|
|
|
|
createRotationMatrixRodriguez(omega, dR);
|
|
|
|
_cams[i].setRotation(dR * R0);
|
|
|
|
} // end for (i)
|
|
|
|
} // end MetricBundleOptimizerBase::updateParametersA()
|
|
|
|
|
|
|
|
void
|
|
|
|
MetricBundleOptimizerBase::updateParametersB(VectorArray<double> const& deltaBj)
|
|
|
|
{
|
|
|
|
for (int j = _nNonvaryingB; j < _nParametersB; ++j)
|
|
|
|
{
|
|
|
|
_Xs[j][0] += deltaBj[j][0];
|
|
|
|
_Xs[j][1] += deltaBj[j][1];
|
|
|
|
_Xs[j][2] += deltaBj[j][2];
|
|
|
|
}
|
|
|
|
} // end MetricBundleOptimizerBase::updateParametersB()
|
|
|
|
|
|
|
|
void
|
|
|
|
MetricBundleOptimizerBase::poseDerivatives(int i, int j, Vector3d& XX,
|
|
|
|
Matrix3x6d& d_dRT, Matrix3x3d& d_dX) const
|
|
|
|
{
|
|
|
|
XX = _cams[i].transformPointIntoCameraSpace(_Xs[j]);
|
|
|
|
|
|
|
|
// See Frank Dellaerts bundle adjustment tutorial.
|
|
|
|
// d(dR * R0 * X + t)/d omega = -[R0 * X]_x
|
|
|
|
Matrix3x3d J;
|
|
|
|
makeCrossProductMatrix(XX - _cams[i].getTranslation(), J);
|
|
|
|
scaleMatrixIP(-1.0, J);
|
|
|
|
|
|
|
|
// Now the transformation from world coords into camera space is xx = Rx + T
|
|
|
|
// Hence the derivative of x wrt. T is just the identity matrix.
|
|
|
|
makeIdentityMatrix(d_dRT);
|
|
|
|
copyMatrixSlice(J, 0, 0, 3, 3, d_dRT, 0, 3);
|
|
|
|
|
|
|
|
// The derivative of Rx+T wrt x is just R.
|
|
|
|
copyMatrix(_cams[i].getRotation(), d_dX);
|
|
|
|
} // end MetricBundleOptimizerBase::poseDerivatives()
|
|
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
|
|
void
|
|
|
|
StdMetricBundleOptimizer::fillJacobians(Matrix<double>& Ak,
|
|
|
|
Matrix<double>& Bk,
|
|
|
|
Matrix<double>& Ck,
|
|
|
|
int i, int j, int k)
|
|
|
|
{
|
|
|
|
Vector3d XX;
|
|
|
|
Matrix3x6d d_dRT;
|
|
|
|
Matrix3x3d d_dX;
|
|
|
|
this->poseDerivatives(i, j, XX, d_dRT, d_dX);
|
|
|
|
|
|
|
|
double const f = _cams[i].getFocalLength();
|
|
|
|
double const ar = _cams[i].getAspectRatio();
|
|
|
|
|
|
|
|
Matrix2x3d dp_dX;
|
|
|
|
double const bx = f / (XX[2] * XX[2]);
|
|
|
|
double const by = ar * bx;
|
|
|
|
dp_dX[0][0] = bx * XX[2]; dp_dX[0][1] = 0; dp_dX[0][2] = -bx * XX[0];
|
|
|
|
dp_dX[1][0] = 0; dp_dX[1][1] = by * XX[2]; dp_dX[1][2] = -by * XX[1];
|
|
|
|
|
|
|
|
multiply_A_B(dp_dX, d_dRT, Ak);
|
|
|
|
multiply_A_B(dp_dX, d_dX, Bk);
|
|
|
|
} // end StdMetricBundleOptimizer::fillJacobians()
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
|
|
void
|
|
|
|
CommonInternalsMetricBundleOptimizer::fillJacobians(Matrix<double>& Ak,
|
|
|
|
Matrix<double>& Bk,
|
|
|
|
Matrix<double>& Ck,
|
|
|
|
int i, int j, int k)
|
|
|
|
{
|
|
|
|
double const focalLength = _K[0][0];
|
|
|
|
|
|
|
|
Vector3d XX;
|
|
|
|
Matrix3x6d dXX_dRT;
|
|
|
|
Matrix3x3d dXX_dX;
|
|
|
|
this->poseDerivatives(i, j, XX, dXX_dRT, dXX_dX);
|
|
|
|
|
|
|
|
Vector2d xu; // undistorted image point
|
|
|
|
xu[0] = XX[0] / XX[2];
|
|
|
|
xu[1] = XX[1] / XX[2];
|
|
|
|
|
|
|
|
Vector2d const xd = _distortion(xu); // distorted image point
|
|
|
|
|
|
|
|
Matrix2x2d dp_dxd;
|
|
|
|
dp_dxd[0][0] = focalLength; dp_dxd[0][1] = 0;
|
|
|
|
dp_dxd[1][0] = 0; dp_dxd[1][1] = _cachedAspectRatio * focalLength;
|
|
|
|
|
|
|
|
{
|
|
|
|
// First, lets do the derivative wrt the structure and motion parameters.
|
|
|
|
Matrix2x3d dxu_dXX;
|
|
|
|
dxu_dXX[0][0] = 1.0f / XX[2]; dxu_dXX[0][1] = 0; dxu_dXX[0][2] = -XX[0]/(XX[2]*XX[2]);
|
|
|
|
dxu_dXX[1][0] = 0; dxu_dXX[1][1] = 1.0f / XX[2]; dxu_dXX[1][2] = -XX[1]/(XX[2]*XX[2]);
|
|
|
|
|
|
|
|
Matrix2x2d dxd_dxu = _distortion.derivativeWrtUndistortedPoint(xu);
|
|
|
|
|
|
|
|
Matrix2x2d dp_dxu = dp_dxd * dxd_dxu;
|
|
|
|
Matrix2x3d dp_dXX = dp_dxu * dxu_dXX;
|
|
|
|
|
|
|
|
multiply_A_B(dp_dXX, dXX_dRT, Ak);
|
|
|
|
multiply_A_B(dp_dXX, dXX_dX, Bk);
|
|
|
|
} // end scope
|
|
|
|
|
|
|
|
switch (_mode)
|
|
|
|
{
|
Assorted camera tracker improvements
- Add support for refining the camera's intrinsic parameters
during a solve. Currently, refining supports only the following
combinations of intrinsic parameters:
f
f, cx, cy
f, cx, cy, k1, k2
f, k1
f, k1, k2
This is not the same as autocalibration, since the user must
still make a reasonable initial guess about the focal length and
other parameters, whereas true autocalibration would eliminate
the need for the user specify intrinsic parameters at all.
However, the solver works well with only rough guesses for the
focal length, so perhaps full autocalibation is not that
important.
Adding support for the last two combinations, (f, k1) and (f,
k1, k2) required changes to the library libmv depends on for
bundle adjustment, SSBA. These changes should get ported
upstream not just to libmv but to SSBA as well.
- Improved the region of convergence for bundle adjustment by
increasing the number of Levenberg-Marquardt iterations from 50
to 500. This way, the solver is able to crawl out of the bad
local minima it gets stuck in when changing from, for example,
bundling k1 and k2 to just k1 and resetting k2 to 0.
- Add several new region tracker implementations. A region tracker
is a libmv concept, which refers to tracking a template image
pattern through frames. The impact to end users is that tracking
should "just work better". I am reserving a more detailed
writeup, and maybe a paper, for later.
- Other libmv tweaks, such as detecting that a tracker is headed
outside of the image bounds.
This includes several changes made directly to the libmv extern
code rather expecting to get those changes through normal libmv
channels, because I, the libmv BDFL, decided it was faster to work
on libmv directly in Blender, then later reverse-port the libmv
changes from Blender back into libmv trunk. The interesting part
is that I added a full Levenberg-Marquardt loop to the region
tracking code, which should lead to a more stable solutions. I
also added a hacky implementation of "Efficient Second-Order
Minimization" for tracking, which works nicely. A more detailed
quantitative evaluation will follow.
Original patch by Keir, cleaned a bit by myself.
2011-11-14 06:41:23 +00:00
|
|
|
case FULL_BUNDLE_FOCAL_AND_RADIAL_K1:
|
|
|
|
{
|
|
|
|
// Focal length.
|
|
|
|
Ck[0][0] = xd[0];
|
|
|
|
Ck[1][0] = xd[1];
|
|
|
|
|
|
|
|
// For radial, k1 only.
|
|
|
|
Matrix2x2d dxd_dk1k2 = _distortion.derivativeWrtRadialParameters(xu);
|
|
|
|
Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
|
|
|
|
Ck[0][1] = d_dk1k2[0][0];
|
|
|
|
Ck[1][1] = d_dk1k2[1][0];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_AND_RADIAL:
|
|
|
|
{
|
|
|
|
// Focal length.
|
|
|
|
Ck[0][0] = xd[0];
|
|
|
|
Ck[1][0] = xd[1];
|
|
|
|
|
|
|
|
// Radial k1 and k2.
|
|
|
|
Matrix2x2d dxd_dk1k2 = _distortion.derivativeWrtRadialParameters(xu);
|
|
|
|
Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
|
|
|
|
copyMatrixSlice(d_dk1k2, 0, 0, 2, 2, Ck, 0, 1);
|
|
|
|
break;
|
|
|
|
}
|
2011-11-07 12:55:18 +00:00
|
|
|
case FULL_BUNDLE_RADIAL_TANGENTIAL:
|
|
|
|
{
|
|
|
|
Matrix2x2d dxd_dp1p2 = _distortion.derivativeWrtTangentialParameters(xu);
|
|
|
|
Matrix2x2d d_dp1p2 = dp_dxd * dxd_dp1p2;
|
|
|
|
copyMatrixSlice(d_dp1p2, 0, 0, 2, 2, Ck, 0, 5);
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_RADIAL:
|
|
|
|
{
|
|
|
|
Matrix2x2d dxd_dk1k2 = _distortion.derivativeWrtRadialParameters(xu);
|
|
|
|
Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
|
|
|
|
copyMatrixSlice(d_dk1k2, 0, 0, 2, 2, Ck, 0, 3);
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH_PP:
|
|
|
|
{
|
|
|
|
Ck[0][1] = 1; Ck[0][2] = 0;
|
|
|
|
Ck[1][1] = 0; Ck[1][2] = 1;
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH:
|
|
|
|
{
|
|
|
|
Ck[0][0] = xd[0];
|
|
|
|
Ck[1][0] = xd[1];
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_METRIC:
|
|
|
|
{
|
|
|
|
}
|
|
|
|
} // end switch
|
|
|
|
} // end CommonInternalsMetricBundleOptimizer::fillJacobians()
|
|
|
|
|
|
|
|
void
|
|
|
|
CommonInternalsMetricBundleOptimizer::updateParametersC(Vector<double> const& deltaC)
|
|
|
|
{
|
|
|
|
switch (_mode)
|
|
|
|
{
|
Assorted camera tracker improvements
- Add support for refining the camera's intrinsic parameters
during a solve. Currently, refining supports only the following
combinations of intrinsic parameters:
f
f, cx, cy
f, cx, cy, k1, k2
f, k1
f, k1, k2
This is not the same as autocalibration, since the user must
still make a reasonable initial guess about the focal length and
other parameters, whereas true autocalibration would eliminate
the need for the user specify intrinsic parameters at all.
However, the solver works well with only rough guesses for the
focal length, so perhaps full autocalibation is not that
important.
Adding support for the last two combinations, (f, k1) and (f,
k1, k2) required changes to the library libmv depends on for
bundle adjustment, SSBA. These changes should get ported
upstream not just to libmv but to SSBA as well.
- Improved the region of convergence for bundle adjustment by
increasing the number of Levenberg-Marquardt iterations from 50
to 500. This way, the solver is able to crawl out of the bad
local minima it gets stuck in when changing from, for example,
bundling k1 and k2 to just k1 and resetting k2 to 0.
- Add several new region tracker implementations. A region tracker
is a libmv concept, which refers to tracking a template image
pattern through frames. The impact to end users is that tracking
should "just work better". I am reserving a more detailed
writeup, and maybe a paper, for later.
- Other libmv tweaks, such as detecting that a tracker is headed
outside of the image bounds.
This includes several changes made directly to the libmv extern
code rather expecting to get those changes through normal libmv
channels, because I, the libmv BDFL, decided it was faster to work
on libmv directly in Blender, then later reverse-port the libmv
changes from Blender back into libmv trunk. The interesting part
is that I added a full Levenberg-Marquardt loop to the region
tracking code, which should lead to a more stable solutions. I
also added a hacky implementation of "Efficient Second-Order
Minimization" for tracking, which works nicely. A more detailed
quantitative evaluation will follow.
Original patch by Keir, cleaned a bit by myself.
2011-11-14 06:41:23 +00:00
|
|
|
case FULL_BUNDLE_FOCAL_AND_RADIAL_K1:
|
|
|
|
{
|
|
|
|
_K[0][0] += deltaC[0];
|
|
|
|
_K[1][1] = _cachedAspectRatio * _K[0][0];
|
|
|
|
_distortion.k1 += deltaC[1];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_AND_RADIAL:
|
|
|
|
{
|
|
|
|
_K[0][0] += deltaC[0];
|
|
|
|
_K[1][1] = _cachedAspectRatio * _K[0][0];
|
|
|
|
_distortion.k1 += deltaC[1];
|
|
|
|
_distortion.k2 += deltaC[2];
|
|
|
|
break;
|
|
|
|
}
|
2011-11-07 12:55:18 +00:00
|
|
|
case FULL_BUNDLE_RADIAL_TANGENTIAL:
|
|
|
|
{
|
|
|
|
_distortion.p1 += deltaC[5];
|
|
|
|
_distortion.p2 += deltaC[6];
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_RADIAL:
|
|
|
|
{
|
|
|
|
_distortion.k1 += deltaC[3];
|
|
|
|
_distortion.k2 += deltaC[4];
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH_PP:
|
|
|
|
{
|
|
|
|
_K[0][2] += deltaC[1];
|
|
|
|
_K[1][2] += deltaC[2];
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH:
|
|
|
|
{
|
|
|
|
_K[0][0] += deltaC[0];
|
|
|
|
_K[1][1] = _cachedAspectRatio * _K[0][0];
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_METRIC:
|
|
|
|
{
|
|
|
|
}
|
|
|
|
} // end switch
|
|
|
|
} // end CommonInternalsMetricBundleOptimizer::updateParametersC()
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
|
|
void
|
|
|
|
VaryingInternalsMetricBundleOptimizer::fillJacobians(Matrix<double>& Ak,
|
|
|
|
Matrix<double>& Bk,
|
|
|
|
Matrix<double>& Ck,
|
|
|
|
int i, int j, int k)
|
|
|
|
{
|
|
|
|
Vector3d XX;
|
|
|
|
Matrix3x6d dXX_dRT;
|
|
|
|
Matrix3x3d dXX_dX;
|
|
|
|
this->poseDerivatives(i, j, XX, dXX_dRT, dXX_dX);
|
|
|
|
|
|
|
|
Vector2d xu; // undistorted image point
|
|
|
|
xu[0] = XX[0] / XX[2];
|
|
|
|
xu[1] = XX[1] / XX[2];
|
|
|
|
|
|
|
|
Vector2d const xd = _distortions[i](xu); // distorted image point
|
|
|
|
|
|
|
|
double const focalLength = _cams[i].getFocalLength();
|
|
|
|
double const aspectRatio = _cams[i].getAspectRatio();
|
|
|
|
|
|
|
|
Matrix2x2d dp_dxd;
|
|
|
|
dp_dxd[0][0] = focalLength; dp_dxd[0][1] = 0;
|
|
|
|
dp_dxd[1][0] = 0; dp_dxd[1][1] = aspectRatio * focalLength;
|
|
|
|
|
|
|
|
{
|
|
|
|
// First, lets do the derivative wrt the structure and motion parameters.
|
|
|
|
Matrix2x3d dxu_dXX;
|
|
|
|
dxu_dXX[0][0] = 1.0f / XX[2]; dxu_dXX[0][1] = 0; dxu_dXX[0][2] = -XX[0]/(XX[2]*XX[2]);
|
|
|
|
dxu_dXX[1][0] = 0; dxu_dXX[1][1] = 1.0f / XX[2]; dxu_dXX[1][2] = -XX[1]/(XX[2]*XX[2]);
|
|
|
|
|
|
|
|
Matrix2x2d dxd_dxu = _distortions[i].derivativeWrtUndistortedPoint(xu);
|
|
|
|
|
|
|
|
Matrix2x2d dp_dxu = dp_dxd * dxd_dxu;
|
|
|
|
Matrix2x3d dp_dXX = dp_dxu * dxu_dXX;
|
|
|
|
|
|
|
|
Matrix2x6d dp_dRT;
|
|
|
|
|
|
|
|
multiply_A_B(dp_dXX, dXX_dRT, dp_dRT);
|
|
|
|
copyMatrixSlice(dp_dRT, 0, 0, 2, 6, Ak, 0, 0);
|
|
|
|
multiply_A_B(dp_dXX, dXX_dX, Bk);
|
|
|
|
} // end scope
|
|
|
|
|
|
|
|
switch (_mode)
|
|
|
|
{
|
|
|
|
case FULL_BUNDLE_RADIAL_TANGENTIAL:
|
|
|
|
{
|
|
|
|
Matrix2x2d dxd_dp1p2 = _distortions[i].derivativeWrtTangentialParameters(xu);
|
|
|
|
Matrix2x2d d_dp1p2 = dp_dxd * dxd_dp1p2;
|
|
|
|
copyMatrixSlice(d_dp1p2, 0, 0, 2, 2, Ak, 0, 11);
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_RADIAL:
|
|
|
|
{
|
|
|
|
Matrix2x2d dxd_dk1k2 = _distortions[i].derivativeWrtRadialParameters(xu);
|
|
|
|
Matrix2x2d d_dk1k2 = dp_dxd * dxd_dk1k2;
|
|
|
|
copyMatrixSlice(d_dk1k2, 0, 0, 2, 2, Ak, 0, 9);
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH_PP:
|
|
|
|
{
|
|
|
|
Ak[0][7] = 1; Ak[0][8] = 0;
|
|
|
|
Ak[1][7] = 0; Ak[1][8] = 1;
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH:
|
|
|
|
{
|
|
|
|
Ak[0][6] = xd[0];
|
|
|
|
Ak[1][6] = xd[1];
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_METRIC:
|
|
|
|
{
|
|
|
|
}
|
|
|
|
} // end switch
|
|
|
|
} // end VaryingInternalsMetricBundleOptimizer::fillJacobians()
|
|
|
|
|
|
|
|
void
|
|
|
|
VaryingInternalsMetricBundleOptimizer::updateParametersA(VectorArray<double> const& deltaAi)
|
|
|
|
{
|
|
|
|
Vector3d T, omega;
|
|
|
|
Matrix3x3d R0, dR, K;
|
|
|
|
|
|
|
|
for (int i = _nNonvaryingA; i < _nParametersA; ++i)
|
|
|
|
{
|
|
|
|
Vector<double> const& deltaA = deltaAi[i];
|
|
|
|
|
|
|
|
T = _cams[i].getTranslation();
|
|
|
|
T[0] += deltaA[0];
|
|
|
|
T[1] += deltaA[1];
|
|
|
|
T[2] += deltaA[2];
|
|
|
|
_cams[i].setTranslation(T);
|
|
|
|
|
|
|
|
// Create incremental rotation using Rodriguez formula.
|
|
|
|
R0 = _cams[i].getRotation();
|
|
|
|
omega[0] = deltaA[3];
|
|
|
|
omega[1] = deltaA[4];
|
|
|
|
omega[2] = deltaA[5];
|
|
|
|
createRotationMatrixRodriguez(omega, dR);
|
|
|
|
_cams[i].setRotation(dR * R0);
|
|
|
|
|
|
|
|
K = _cams[i].getIntrinsic();
|
|
|
|
|
|
|
|
switch (_mode)
|
|
|
|
{
|
|
|
|
case FULL_BUNDLE_RADIAL_TANGENTIAL:
|
|
|
|
{
|
|
|
|
_distortions[i].p1 += deltaA[11];
|
|
|
|
_distortions[i].p2 += deltaA[12];
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_RADIAL:
|
|
|
|
{
|
|
|
|
_distortions[i].k1 += deltaA[9];
|
|
|
|
_distortions[i].k2 += deltaA[10];
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH_PP:
|
|
|
|
{
|
|
|
|
K[0][2] += deltaA[7];
|
|
|
|
K[1][2] += deltaA[8];
|
|
|
|
// No break here!
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_FOCAL_LENGTH:
|
|
|
|
{
|
|
|
|
double const ar = K[1][1] / K[0][0];
|
|
|
|
K[0][0] += deltaA[6];
|
|
|
|
K[1][1] = ar * K[0][0];
|
|
|
|
}
|
|
|
|
case FULL_BUNDLE_METRIC:
|
|
|
|
{
|
|
|
|
}
|
|
|
|
} // end switch
|
|
|
|
_cams[i].setIntrinsic(K);
|
|
|
|
} // end for (i)
|
|
|
|
} // end VaryingInternalsMetricBundleOptimizer::updateParametersC()
|
|
|
|
|
|
|
|
} // end namespace V3D
|
|
|
|
|
|
|
|
#endif // defined(V3DLIB_ENABLE_SUITESPARSE)
|