blender/intern/cycles/kernel/osl/bsdf_ward.cpp

223 lines
8.9 KiB
C++
Raw Normal View History

/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <OpenImageIO/fmath.h>
#include <OSL/genclosure.h>
#include "osl_closures.h"
#include "util_math.h"
CCL_NAMESPACE_BEGIN
using namespace OSL;
// anisotropic ward - leaks energy at grazing angles
// see http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
class WardClosure : public BSDFClosure {
public:
Vec3 m_N;
Vec3 m_T;
float m_ax, m_ay;
WardClosure() : BSDFClosure(Labels::GLOSSY) { }
void setup()
{
m_ax = clamp(m_ax, 1e-5f, 1.0f);
m_ay = clamp(m_ay, 1e-5f, 1.0f);
}
bool mergeable (const ClosurePrimitive *other) const {
const WardClosure *comp = (const WardClosure *)other;
return m_N == comp->m_N && m_T == comp->m_T &&
m_ax == comp->m_ax && m_ay == comp->m_ay &&
BSDFClosure::mergeable(other);
}
size_t memsize () const { return sizeof(*this); }
const char *name () const { return "ward"; }
void print_on (std::ostream &out) const {
out << name() << " ((";
out << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), (";
out << m_T[0] << ", " << m_T[1] << ", " << m_T[2] << "), ";
out << m_ax << ", " << m_ay << ")";
}
float albedo (const Vec3 &omega_out) const
{
return 1.0f;
}
Color3 eval_reflect (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
{
float cosNO = m_N.dot(omega_out);
float cosNI = m_N.dot(omega_in);
if (cosNI > 0 && cosNO > 0) {
// get half vector and get x,y basis on the surface for anisotropy
Vec3 H = omega_in + omega_out;
H.normalize(); // normalize needed for pdf
Vec3 X, Y;
make_orthonormals(m_N, m_T, X, Y);
// eq. 4
float dotx = H.dot(X) / m_ax;
float doty = H.dot(Y) / m_ay;
float dotn = H.dot(m_N);
float exp_arg = (dotx * dotx + doty * doty) / (dotn * dotn);
float denom = (4 * (float) M_PI * m_ax * m_ay * sqrtf(cosNO * cosNI));
float exp_val = expf(-exp_arg);
float out = cosNI * exp_val / denom;
float oh = H.dot(omega_out);
denom = 4 * (float) M_PI * m_ax * m_ay * oh * dotn * dotn * dotn;
pdf = exp_val / denom;
return Color3 (out, out, out);
}
return Color3 (0, 0, 0);
}
Color3 eval_transmit (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
{
return Color3 (0, 0, 0);
}
ustring sample (const Vec3 &Ng,
const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
float randu, float randv,
Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
float &pdf, Color3 &eval) const
{
float cosNO = m_N.dot(omega_out);
if (cosNO > 0) {
// get x,y basis on the surface for anisotropy
Vec3 X, Y;
make_orthonormals(m_N, m_T, X, Y);
// generate random angles for the half vector
// eq. 7 (taking care around discontinuities to keep
// output angle in the right quadrant)
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
// and sin(atan(x)) == x/sqrt(1+x^2)
float alphaRatio = m_ay / m_ax;
float cosPhi, sinPhi;
if (randu < 0.25f) {
float val = 4 * randu;
float tanPhi = alphaRatio * tanf((float) M_PI_2 * val);
cosPhi = 1 / sqrtf(1 + tanPhi * tanPhi);
sinPhi = tanPhi * cosPhi;
} else if (randu < 0.5) {
float val = 1 - 4 * (0.5f - randu);
float tanPhi = alphaRatio * tanf((float) M_PI_2 * val);
// phi = (float) M_PI - phi;
cosPhi = -1 / sqrtf(1 + tanPhi * tanPhi);
sinPhi = -tanPhi * cosPhi;
} else if (randu < 0.75f) {
float val = 4 * (randu - 0.5f);
float tanPhi = alphaRatio * tanf((float) M_PI_2 * val);
//phi = (float) M_PI + phi;
cosPhi = -1 / sqrtf(1 + tanPhi * tanPhi);
sinPhi = tanPhi * cosPhi;
} else {
float val = 1 - 4 * (1 - randu);
float tanPhi = alphaRatio * tanf((float) M_PI_2 * val);
// phi = 2 * (float) M_PI - phi;
cosPhi = 1 / sqrtf(1 + tanPhi * tanPhi);
sinPhi = -tanPhi * cosPhi;
}
// eq. 6
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
// and sin(atan(x)) == x/sqrt(1+x^2)
float thetaDenom = (cosPhi * cosPhi) / (m_ax * m_ax) + (sinPhi * sinPhi) / (m_ay * m_ay);
float tanTheta2 = -logf(1 - randv) / thetaDenom;
float cosTheta = 1 / sqrtf(1 + tanTheta2);
float sinTheta = cosTheta * sqrtf(tanTheta2);
Vec3 h; // already normalized becaused expressed from spherical coordinates
h.x = sinTheta * cosPhi;
h.y = sinTheta * sinPhi;
h.z = cosTheta;
// compute terms that are easier in local space
float dotx = h.x / m_ax;
float doty = h.y / m_ay;
float dotn = h.z;
// transform to world space
h = h.x * X + h.y * Y + h.z * m_N;
// generate the final sample
float oh = h.dot(omega_out);
omega_in.x = 2 * oh * h.x - omega_out.x;
omega_in.y = 2 * oh * h.y - omega_out.y;
omega_in.z = 2 * oh * h.z - omega_out.z;
if (Ng.dot(omega_in) > 0) {
float cosNI = m_N.dot(omega_in);
if (cosNI > 0) {
// eq. 9
float exp_arg = (dotx * dotx + doty * doty) / (dotn * dotn);
float denom = 4 * (float) M_PI * m_ax * m_ay * oh * dotn * dotn * dotn;
pdf = expf(-exp_arg) / denom;
// compiler will reuse expressions already computed
denom = (4 * (float) M_PI * m_ax * m_ay * sqrtf(cosNO * cosNI));
float power = cosNI * expf(-exp_arg) / denom;
eval.setValue(power, power, power);
domega_in_dx = (2 * m_N.dot(domega_out_dx)) * m_N - domega_out_dx;
domega_in_dy = (2 * m_N.dot(domega_out_dy)) * m_N - domega_out_dy;
/* disabled for now - gives texture filtering problems */
#if 0
// Since there is some blur to this reflection, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
domega_in_dx *= 10;
domega_in_dy *= 10;
#endif
}
}
}
return Labels::REFLECT;
}
};
ClosureParam bsdf_ward_params[] = {
CLOSURE_VECTOR_PARAM(WardClosure, m_N),
CLOSURE_VECTOR_PARAM(WardClosure, m_T),
CLOSURE_FLOAT_PARAM (WardClosure, m_ax),
CLOSURE_FLOAT_PARAM (WardClosure, m_ay),
CLOSURE_STRING_KEYPARAM("label"),
CLOSURE_FINISH_PARAM(WardClosure) };
CLOSURE_PREPARE(bsdf_ward_prepare, WardClosure)
CCL_NAMESPACE_END