blender/extern/recastnavigation/Detour/Source/DetourStatNavMesh.cpp

877 lines
21 KiB
C++
Raw Normal View History

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdio.h>
#include "DetourStatNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
//////////////////////////////////////////////////////////////////////////////////////////
dtStatNavMesh::dtStatNavMesh() :
m_data(0),
m_dataSize(0),
m_header(0),
m_nodePool(0),
m_openList(0)
{
}
dtStatNavMesh::~dtStatNavMesh()
{
delete m_nodePool;
delete m_openList;
if (m_data)
delete [] m_data;
}
bool dtStatNavMesh::init(unsigned char* data, int dataSize, bool ownsData)
{
dtStatNavMeshHeader* header = (dtStatNavMeshHeader*)data;
if (header->magic != DT_STAT_NAVMESH_MAGIC)
return false;
if (header->version != DT_STAT_NAVMESH_VERSION)
return false;
const int headerSize = sizeof(dtStatNavMeshHeader);
const int vertsSize = sizeof(float)*3*header->nverts;
const int polysSize = sizeof(dtStatPoly)*header->npolys;
const int nodesSize = sizeof(dtStatBVNode)*header->npolys*2;
const int detailMeshesSize = sizeof(dtStatPolyDetail)*header->ndmeshes;
const int detailVertsSize = sizeof(float)*3*header->ndverts;
const int detailTrisSize = sizeof(unsigned char)*4*header->ndtris;
unsigned char* d = data + headerSize;
header->verts = (float*)d; d += vertsSize;
header->polys = (dtStatPoly*)d; d += polysSize;
header->bvtree = (dtStatBVNode*)d; d += nodesSize;
header->dmeshes = (dtStatPolyDetail*)d; d += detailMeshesSize;
header->dverts = (float*)d; d += detailVertsSize;
header->dtris = (unsigned char*)d; d += detailTrisSize;
m_nodePool = new dtNodePool(2048, 256);
if (!m_nodePool)
return false;
m_openList = new dtNodeQueue(2048);
if (!m_openList)
return false;
if (ownsData)
{
m_data = data;
m_dataSize = dataSize;
}
m_header = header;
return true;
}
const dtStatPoly* dtStatNavMesh::getPolyByRef(dtStatPolyRef ref) const
{
if (!m_header || ref == 0 || (int)ref > m_header->npolys) return 0;
return &m_header->polys[ref-1];
}
int dtStatNavMesh::getPolyIndexByRef(dtStatPolyRef ref) const
{
if (!m_header || ref == 0 || (int)ref > m_header->npolys) return -1;
return (int)ref-1;
}
int dtStatNavMesh::findPath(dtStatPolyRef startRef, dtStatPolyRef endRef,
const float* startPos, const float* endPos,
dtStatPolyRef* path, const int maxPathSize)
{
if (!m_header) return 0;
if (!startRef || !endRef)
return 0;
if (!maxPathSize)
return 0;
if (startRef == endRef)
{
path[0] = startRef;
return 1;
}
m_nodePool->clear();
m_openList->clear();
static const float H_SCALE = 1.1f; // Heuristic scale.
dtNode* startNode = m_nodePool->getNode(startRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = vdist(startPos, endPos) * H_SCALE;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtNode* lastBestNode = startNode;
float lastBestNodeCost = startNode->total;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
if (bestNode->id == endRef)
{
lastBestNode = bestNode;
break;
}
const dtStatPoly* poly = getPoly(bestNode->id-1);
for (int i = 0; i < (int)poly->nv; ++i)
{
dtStatPolyRef neighbour = poly->n[i];
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Calculate cost.
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, startPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.cost = parent->cost + vdist(p0,p1);
// Special case for last node.
if (newNode.id == endRef)
newNode.cost += vdist(p1, endPos);
// Heuristic
const float h = vdist(p1,endPos)*H_SCALE;
newNode.total = newNode.cost + h;
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->cost = newNode.cost;
actualNode->total = newNode.total;
if (h < lastBestNodeCost)
{
lastBestNodeCost = h;
lastBestNode = actualNode;
}
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
// Reverse the path.
dtNode* prev = 0;
dtNode* node = lastBestNode;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
node->pidx = m_nodePool->getNodeIdx(prev);
prev = node;
node = next;
}
while (node);
// Store path
node = prev;
int n = 0;
do
{
path[n++] = node->id;
node = m_nodePool->getNodeAtIdx(node->pidx);
}
while (node && n < maxPathSize);
return n;
}
bool dtStatNavMesh::closestPointToPoly(dtStatPolyRef ref, const float* pos, float* closest) const
{
int idx = getPolyIndexByRef(ref);
if (idx == -1)
return false;
float closestDistSqr = FLT_MAX;
const dtStatPoly* p = getPoly(idx);
const dtStatPolyDetail* pd = getPolyDetail(idx);
for (int j = 0; j < pd->ntris; ++j)
{
const unsigned char* t = getDetailTri(pd->tbase+j);
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < p->nv)
v[k] = getVertex(p->v[t[k]]);
else
v[k] = getDetailVertex(pd->vbase+(t[k]-p->nv));
}
float pt[3];
closestPtPointTriangle(pt, pos, v[0], v[1], v[2]);
float d = vdistSqr(pos, pt);
if (d < closestDistSqr)
{
vcopy(closest, pt);
closestDistSqr = d;
}
}
return true;
}
bool dtStatNavMesh::getPolyHeight(dtStatPolyRef ref, const float* pos, float* height) const
{
int idx = getPolyIndexByRef(ref);
if (idx == -1)
return false;
const dtStatPoly* p = getPoly(idx);
const dtStatPolyDetail* pd = getPolyDetail(idx);
for (int i = 0; i < pd->ntris; ++i)
{
const unsigned char* t = getDetailTri(pd->tbase+i);
const float* v[3];
for (int j = 0; j < 3; ++j)
{
if (t[j] < p->nv)
v[j] = getVertex(p->v[t[j]]);
else
v[j] = getDetailVertex(pd->vbase+(t[j]-p->nv));
}
float h;
if (closestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
if (height)
*height = h;
return true;
}
}
return false;
}
int dtStatNavMesh::findStraightPath(const float* startPos, const float* endPos,
const dtStatPolyRef* path, const int pathSize,
float* straightPath, const int maxStraightPathSize)
{
if (!m_header) return 0;
if (!maxStraightPathSize)
return 0;
if (!path[0])
return 0;
int straightPathSize = 0;
float closestStartPos[3];
if (!closestPointToPoly(path[0], startPos, closestStartPos))
return 0;
// Add start point.
vcopy(&straightPath[straightPathSize*3], closestStartPos);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
float closestEndPos[3];
if (!closestPointToPoly(path[pathSize-1], endPos, closestEndPos))
return 0;
float portalApex[3], portalLeft[3], portalRight[3];
if (pathSize > 1)
{
vcopy(portalApex, closestStartPos);
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
int apexIndex = 0;
int leftIndex = 0;
int rightIndex = 0;
for (int i = 0; i < pathSize; ++i)
{
float left[3], right[3];
if (i < pathSize-1)
{
// Next portal.
getPortalPoints(path[i], path[i+1], left, right);
}
else
{
// End of the path.
vcopy(left, closestEndPos);
vcopy(right, closestEndPos);
}
// Right vertex.
if (vequal(portalApex, portalRight))
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
if (triArea2D(portalApex, portalRight, right) <= 0.0f)
{
if (triArea2D(portalApex, portalLeft, right) > 0.0f)
{
vcopy(portalRight, right);
rightIndex = i;
}
else
{
vcopy(portalApex, portalLeft);
apexIndex = leftIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
// Left vertex.
if (vequal(portalApex, portalLeft))
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
if (triArea2D(portalApex, portalLeft, left) >= 0.0f)
{
if (triArea2D(portalApex, portalRight, left) < 0.0f)
{
vcopy(portalLeft, left);
leftIndex = i;
}
else
{
vcopy(portalApex, portalRight);
apexIndex = rightIndex;
if (!vequal(&straightPath[(straightPathSize-1)*3], portalApex))
{
vcopy(&straightPath[straightPathSize*3], portalApex);
straightPathSize++;
if (straightPathSize >= maxStraightPathSize)
return straightPathSize;
}
vcopy(portalLeft, portalApex);
vcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
}
}
// Add end point.
vcopy(&straightPath[straightPathSize*3], closestEndPos);
straightPathSize++;
return straightPathSize;
}
int dtStatNavMesh::getPolyVerts(dtStatPolyRef ref, float* verts) const
{
if (!m_header) return 0;
const dtStatPoly* poly = getPolyByRef(ref);
if (!poly) return 0;
float* v = verts;
for (int i = 0; i < (int)poly->nv; ++i)
{
const float* cv = &m_header->verts[poly->v[i]*3];
*v++ = cv[0];
*v++ = cv[1];
*v++ = cv[2];
}
return (int)poly->nv;
}
int dtStatNavMesh::raycast(dtStatPolyRef centerRef, const float* startPos, const float* endPos,
float& t, dtStatPolyRef* path, const int pathSize)
{
if (!m_header) return 0;
if (!centerRef) return 0;
/* dtStatPolyRef prevRef = centerRef; */ /* UNUSED */
dtStatPolyRef curRef = centerRef;
t = 0;
float verts[DT_STAT_VERTS_PER_POLYGON*3];
int n = 0;
while (curRef)
{
// Cast ray against current polygon.
int nv = getPolyVerts(curRef, verts);
if (nv < 3)
{
// Hit bad polygon, report hit.
return n;
}
float tmin, tmax;
int segMin, segMax;
if (!intersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
{
// Could not a polygon, keep the old t and report hit.
return n;
}
// Keep track of furthest t so far.
if (tmax > t)
t = tmax;
if (n < pathSize)
path[n++] = curRef;
// Check the neighbour of this polygon.
const dtStatPoly* poly = getPolyByRef(curRef);
dtStatPolyRef nextRef = poly->n[segMax];
if (!nextRef)
{
// No neighbour, we hit a wall.
return n;
}
// No hit, advance to neighbour polygon.
/* prevRef = curRef; */ /* UNUSED */
curRef = nextRef;
}
return n;
}
float dtStatNavMesh::findDistanceToWall(dtStatPolyRef centerRef, const float* centerPos, float maxRadius,
float* hitPos, float* hitNormal)
{
if (!m_header) return 0;
if (!centerRef) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
float radiusSqr = sqr(maxRadius);
hitNormal[0] = 1;
hitNormal[1] = 0;
hitNormal[2] = 0;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
const dtStatPoly* poly = getPoly(bestNode->id-1);
// Hit test walls.
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
// Skip non-solid edges.
if (poly->n[j]) continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
// Hit wall, update radius.
radiusSqr = distSqr;
// Calculate hit pos.
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
}
// Check to see if the circle expands to one of the neighbours and expand.
for (int i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j = i++)
{
// Skip solid edges.
if (!poly->n[j]) continue;
// Expand to neighbour if not visited yet.
dtStatPolyRef neighbour = poly->n[j];
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Cost
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
// Calc hit normal.
vsub(hitNormal, centerPos, hitPos);
vnormalize(hitNormal);
return sqrtf(radiusSqr);
}
int dtStatNavMesh::findPolysAround(dtStatPolyRef centerRef, const float* centerPos, float radius,
dtStatPolyRef* resultRef, dtStatPolyRef* resultParent, float* resultCost,
const int maxResult)
{
if (!m_header) return 0;
if (!centerRef) return 0;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(centerRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = centerRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
int n = 0;
if (n < maxResult)
{
if (resultRef)
resultRef[n] = startNode->id;
if (resultParent)
resultParent[n] = 0;
if (resultCost)
resultCost[n] = 0;
++n;
}
const float radiusSqr = sqr(radius);
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
const dtStatPoly* poly = getPoly(bestNode->id-1);
for (unsigned i = 0, j = (int)poly->nv-1; i < (int)poly->nv; j=i++)
{
dtStatPolyRef neighbour = poly->n[j];
if (neighbour)
{
// Skip parent node.
if (bestNode->pidx && m_nodePool->getNodeAtIdx(bestNode->pidx)->id == neighbour)
continue;
// Calc distance to the edge.
const float* vj = getVertex(poly->v[j]);
const float* vi = getVertex(poly->v[i]);
float tseg;
float distSqr = distancePtSegSqr2D(centerPos, vj, vi, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
dtNode* parent = bestNode;
dtNode newNode;
newNode.pidx = m_nodePool->getNodeIdx(parent);
newNode.id = neighbour;
// Cost
float p0[3], p1[3];
if (!parent->pidx)
vcopy(p0, centerPos);
else
getEdgeMidPoint(m_nodePool->getNodeAtIdx(parent->pidx)->id, parent->id, p0);
getEdgeMidPoint(parent->id, newNode.id, p1);
newNode.total = parent->total + vdist(p0,p1);
dtNode* actualNode = m_nodePool->getNode(newNode.id);
if (!actualNode)
continue;
if (!((actualNode->flags & DT_NODE_OPEN) && newNode.total > actualNode->total) &&
!((actualNode->flags & DT_NODE_CLOSED) && newNode.total > actualNode->total))
{
actualNode->flags &= ~DT_NODE_CLOSED;
actualNode->pidx = newNode.pidx;
actualNode->total = newNode.total;
if (actualNode->flags & DT_NODE_OPEN)
{
m_openList->modify(actualNode);
}
else
{
if (n < maxResult)
{
if (resultRef)
resultRef[n] = actualNode->id;
if (resultParent)
resultParent[n] = m_nodePool->getNodeAtIdx(actualNode->pidx)->id;
if (resultCost)
resultCost[n] = actualNode->total;
++n;
}
actualNode->flags |= DT_NODE_OPEN;
m_openList->push(actualNode);
}
}
}
}
bestNode->flags |= DT_NODE_CLOSED;
}
return n;
}
// Returns polygons which are withing certain radius from the query location.
int dtStatNavMesh::queryPolygons(const float* center, const float* extents,
dtStatPolyRef* polys, const int maxIds)
{
if (!m_header) return 0;
const dtStatBVNode* node = &m_header->bvtree[0];
const dtStatBVNode* end = &m_header->bvtree[m_header->nnodes];
// Calculate quantized box
const float ics = 1.0f / m_header->cs;
unsigned short bmin[3], bmax[3];
// Clamp query box to world box.
float minx = clamp(center[0] - extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
float miny = clamp(center[1] - extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
float minz = clamp(center[2] - extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
float maxx = clamp(center[0] + extents[0], m_header->bmin[0], m_header->bmax[0]) - m_header->bmin[0];
float maxy = clamp(center[1] + extents[1], m_header->bmin[1], m_header->bmax[1]) - m_header->bmin[1];
float maxz = clamp(center[2] + extents[2], m_header->bmin[2], m_header->bmax[2]) - m_header->bmin[2];
// Quantize
bmin[0] = (unsigned short)(ics * minx) & 0xfffe;
bmin[1] = (unsigned short)(ics * miny) & 0xfffe;
bmin[2] = (unsigned short)(ics * minz) & 0xfffe;
bmax[0] = (unsigned short)(ics * maxx + 1) | 1;
bmax[1] = (unsigned short)(ics * maxy + 1) | 1;
bmax[2] = (unsigned short)(ics * maxz + 1) | 1;
// Traverse tree
int n = 0;
while (node < end)
{
bool overlap = checkOverlapBox(bmin, bmax, node->bmin, node->bmax);
bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxIds)
{
polys[n] = (dtStatPolyRef)node->i;
n++;
}
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
return n;
}
dtStatPolyRef dtStatNavMesh::findNearestPoly(const float* center, const float* extents)
{
if (!m_header) return 0;
// Get nearby polygons from proximity grid.
dtStatPolyRef polys[128];
int npolys = queryPolygons(center, extents, polys, 128);
// Find nearest polygon amongst the nearby polygons.
dtStatPolyRef nearest = 0;
float nearestDistanceSqr = FLT_MAX;
for (int i = 0; i < npolys; ++i)
{
dtStatPolyRef ref = polys[i];
float closest[3];
if (!closestPointToPoly(ref, center, closest))
continue;
float d = vdistSqr(center, closest);
if (d < nearestDistanceSqr)
{
nearestDistanceSqr = d;
nearest = ref;
}
}
return nearest;
}
bool dtStatNavMesh::getPortalPoints(dtStatPolyRef from, dtStatPolyRef to, float* left, float* right) const
{
const dtStatPoly* fromPoly = getPolyByRef(from);
if (!fromPoly)
return false;
// Find common edge between the polygons and returns the segment end points.
for (unsigned i = 0, j = (int)fromPoly->nv - 1; i < (int)fromPoly->nv; j = i++)
{
unsigned short neighbour = fromPoly->n[j];
if (neighbour == to)
{
vcopy(left, getVertex(fromPoly->v[j]));
vcopy(right, getVertex(fromPoly->v[i]));
return true;
}
}
return false;
}
bool dtStatNavMesh::getEdgeMidPoint(dtStatPolyRef from, dtStatPolyRef to, float* mid) const
{
float left[3], right[3];
if (!getPortalPoints(from, to, left,right)) return false;
mid[0] = (left[0]+right[0])*0.5f;
mid[1] = (left[1]+right[1])*0.5f;
mid[2] = (left[2]+right[2])*0.5f;
return true;
}
bool dtStatNavMesh::isInClosedList(dtStatPolyRef ref) const
{
if (!m_nodePool) return false;
const dtNode* node = m_nodePool->findNode(ref);
return node && node->flags & DT_NODE_CLOSED;
}
int dtStatNavMesh::getMemUsed() const
{
if (!m_nodePool || ! m_openList)
return 0;
return sizeof(*this) + m_dataSize +
m_nodePool->getMemUsed() +
m_openList->getMemUsed();
}