Cycles OSL minor optimizations: recycle shading context, don't do memory

allocations for trace data, avoid some virtual function calls. Only helps
a few percentages.
This commit is contained in:
Brecht Van Lommel 2012-12-15 10:18:42 +00:00
parent 35dd893c36
commit 06888b7beb
21 changed files with 599 additions and 690 deletions

@ -56,6 +56,7 @@ set(SRC_CLOSURE_HEADERS
closure/bsdf_reflection.h
closure/bsdf_refraction.h
closure/bsdf_transparent.h
closure/bsdf_util.h
closure/bsdf_ward.h
closure/bsdf_westin.h
closure/emissive.h
@ -64,7 +65,6 @@ set(SRC_CLOSURE_HEADERS
set(SRC_SVM_HEADERS
svm/svm.h
svm/svm_attribute.h
svm/svm_bsdf.h
svm/svm_camera.h
svm/svm_closure.h
svm/svm_convert.h

@ -1,137 +1,296 @@
/*
* Adapted from Open Shading Language with this license:
* Copyright 2011, Blender Foundation.
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* Modifications Copyright 2011, Blender Foundation.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __OSL_BSDF_H__
#define __OSL_BSDF_H__
#include "../closure/bsdf_ashikhmin_velvet.h"
#include "../closure/bsdf_diffuse.h"
#include "../closure/bsdf_oren_nayar.h"
#include "../closure/bsdf_phong_ramp.h"
#include "../closure/bsdf_diffuse_ramp.h"
#include "../closure/bsdf_microfacet.h"
#include "../closure/bsdf_reflection.h"
#include "../closure/bsdf_refraction.h"
#include "../closure/bsdf_transparent.h"
#ifdef __ANISOTROPIC__
#include "../closure/bsdf_ward.h"
#endif
#include "../closure/bsdf_westin.h"
CCL_NAMESPACE_BEGIN
__device float fresnel_dielectric(float eta, const float3 N,
const float3 I, float3 *R, float3 *T,
#ifdef __RAY_DIFFERENTIALS__
const float3 dIdx, const float3 dIdy,
float3 *dRdx, float3 *dRdy,
float3 *dTdx, float3 *dTdy,
#endif
bool *is_inside)
__device int bsdf_sample(KernelGlobals *kg, const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, differential3 *domega_in, float *pdf)
{
float cos = dot(N, I), neta;
float3 Nn;
// compute reflection
*R = (2 * cos)* N - I;
#ifdef __RAY_DIFFERENTIALS__
*dRdx = (2 * dot(N, dIdx)) * N - dIdx;
*dRdy = (2 * dot(N, dIdy)) * N - dIdy;
int label;
#ifdef __OSL__
if(kg->osl && sc->prim)
return OSLShader::bsdf_sample(sd, sc, randu, randv, *eval, *omega_in, *domega_in, *pdf);
#endif
// check which side of the surface we are on
if(cos > 0) {
// we are on the outside of the surface, going in
neta = 1 / eta;
Nn = N;
*is_inside = false;
}
else {
// we are inside the surface,
cos = -cos;
neta = eta;
Nn = -N;
*is_inside = true;
}
*R = (2 * cos)* Nn - I;
float arg = 1 -(neta * neta *(1 -(cos * cos)));
if(arg < 0) {
*T = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = make_float3(0.0f, 0.0f, 0.0f);
*dTdy = make_float3(0.0f, 0.0f, 0.0f);
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
label = bsdf_diffuse_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
label = bsdf_oren_nayar_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
/*case CLOSURE_BSDF_PHONG_RAMP_ID:
label = bsdf_phong_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
label = bsdf_diffuse_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;*/
case CLOSURE_BSDF_TRANSLUCENT_ID:
label = bsdf_translucent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
label = bsdf_reflection_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
label = bsdf_refraction_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
label = bsdf_transparent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
label = bsdf_microfacet_ggx_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
label = bsdf_microfacet_beckmann_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
label = bsdf_ward_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
return 1; // total internal reflection
}
else {
float dnp = sqrtf(arg);
float nK = (neta * cos)- dnp;
*T = -(neta * I)+(nK * Nn);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = -(neta * dIdx) + ((neta - neta * neta * cos / dnp) * dot(dIdx, Nn)) * Nn;
*dTdy = -(neta * dIdy) + ((neta - neta * neta * cos / dnp) * dot(dIdy, Nn)) * Nn;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
label = bsdf_ashikhmin_velvet_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
label = bsdf_westin_backscatter_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
label = bsdf_westin_sheen_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
// compute Fresnel terms
float cosTheta1 = cos; // N.R
float cosTheta2 = -dot(Nn, *T);
float pPara = (cosTheta1 - eta * cosTheta2)/(cosTheta1 + eta * cosTheta2);
float pPerp = (eta * cosTheta1 - cosTheta2)/(eta * cosTheta1 + cosTheta2);
return 0.5f * (pPara * pPara + pPerp * pPerp);
default:
label = LABEL_NONE;
break;
}
return label;
}
__device float fresnel_dielectric_cos(float cosi, float eta)
__device float3 bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const ShaderClosure *sc, const float3 omega_in, float *pdf)
{
// compute fresnel reflectance without explicitly computing
// the refracted direction
float c = fabsf(cosi);
float g = eta * eta - 1 + c * c;
if(g > 0) {
g = sqrtf(g);
float A = (g - c)/(g + c);
float B = (c *(g + c)- 1)/(c *(g - c)+ 1);
return 0.5f * A * A *(1 + B * B);
float3 eval;
#ifdef __OSL__
if(kg->osl && sc->prim)
return OSLShader::bsdf_eval(sd, sc, omega_in, *pdf);
#endif
if(dot(sd->Ng, omega_in) >= 0.0f) {
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
eval = bsdf_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_reflect(sc, sd->I, omega_in, pdf);
break;
/*case CLOSURE_BSDF_PHONG_RAMP_ID:
eval = bsdf_phong_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
eval = bsdf_diffuse_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;*/
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
eval = bsdf_ward_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
eval = bsdf_westin_backscatter_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
eval = bsdf_westin_sheen_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
}
return 1.0f; // TIR(no refracted component)
}
__device float fresnel_conductor(float cosi, float eta, float k)
{
float tmp_f = eta * eta + k * k;
float tmp = tmp_f * cosi * cosi;
float Rparl2 = (tmp - (2.0f * eta * cosi) + 1)/
(tmp + (2.0f * eta * cosi) + 1);
float Rperp2 = (tmp_f - (2.0f * eta * cosi) + cosi * cosi)/
(tmp_f + (2.0f * eta * cosi) + cosi * cosi);
return(Rparl2 + Rperp2) * 0.5f;
}
__device float smooth_step(float edge0, float edge1, float x)
{
float result;
if(x < edge0) result = 0.0f;
else if(x >= edge1) result = 1.0f;
else {
float t = (x - edge0)/(edge1 - edge0);
result = (3.0f-2.0f*t)*(t*t);
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
eval = bsdf_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
eval = bsdf_ward_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
eval = bsdf_westin_backscatter_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
eval = bsdf_westin_sheen_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
}
return eval;
}
__device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
{
#ifdef __OSL__
if(kg->osl && sc->prim) {
OSLShader::bsdf_blur(sc, roughness);
return;
}
#endif
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
bsdf_diffuse_blur(sc, roughness);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
bsdf_oren_nayar_blur(sc, roughness);
break;
/*case CLOSURE_BSDF_PHONG_RAMP_ID:
bsdf_phong_ramp_blur(sc, roughness);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
bsdf_diffuse_ramp_blur(sc, roughness);
break;*/
case CLOSURE_BSDF_TRANSLUCENT_ID:
bsdf_translucent_blur(sc, roughness);
break;
case CLOSURE_BSDF_REFLECTION_ID:
bsdf_reflection_blur(sc, roughness);
break;
case CLOSURE_BSDF_REFRACTION_ID:
bsdf_refraction_blur(sc, roughness);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
bsdf_transparent_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
bsdf_microfacet_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
bsdf_microfacet_beckmann_blur(sc, roughness);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
bsdf_ward_blur(sc, roughness);
break;
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
bsdf_ashikhmin_velvet_blur(sc, roughness);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
bsdf_westin_backscatter_blur(sc, roughness);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
bsdf_westin_sheen_blur(sc, roughness);
break;
#endif
default:
break;
}
return result;
}
CCL_NAMESPACE_END
#endif /* __OSL_BSDF_H__ */

@ -0,0 +1,137 @@
/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __OSL_BSDF_H__
#define __OSL_BSDF_H__
CCL_NAMESPACE_BEGIN
__device float fresnel_dielectric(float eta, const float3 N,
const float3 I, float3 *R, float3 *T,
#ifdef __RAY_DIFFERENTIALS__
const float3 dIdx, const float3 dIdy,
float3 *dRdx, float3 *dRdy,
float3 *dTdx, float3 *dTdy,
#endif
bool *is_inside)
{
float cos = dot(N, I), neta;
float3 Nn;
// compute reflection
*R = (2 * cos)* N - I;
#ifdef __RAY_DIFFERENTIALS__
*dRdx = (2 * dot(N, dIdx)) * N - dIdx;
*dRdy = (2 * dot(N, dIdy)) * N - dIdy;
#endif
// check which side of the surface we are on
if(cos > 0) {
// we are on the outside of the surface, going in
neta = 1 / eta;
Nn = N;
*is_inside = false;
}
else {
// we are inside the surface,
cos = -cos;
neta = eta;
Nn = -N;
*is_inside = true;
}
*R = (2 * cos)* Nn - I;
float arg = 1 -(neta * neta *(1 -(cos * cos)));
if(arg < 0) {
*T = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = make_float3(0.0f, 0.0f, 0.0f);
*dTdy = make_float3(0.0f, 0.0f, 0.0f);
#endif
return 1; // total internal reflection
}
else {
float dnp = sqrtf(arg);
float nK = (neta * cos)- dnp;
*T = -(neta * I)+(nK * Nn);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = -(neta * dIdx) + ((neta - neta * neta * cos / dnp) * dot(dIdx, Nn)) * Nn;
*dTdy = -(neta * dIdy) + ((neta - neta * neta * cos / dnp) * dot(dIdy, Nn)) * Nn;
#endif
// compute Fresnel terms
float cosTheta1 = cos; // N.R
float cosTheta2 = -dot(Nn, *T);
float pPara = (cosTheta1 - eta * cosTheta2)/(cosTheta1 + eta * cosTheta2);
float pPerp = (eta * cosTheta1 - cosTheta2)/(eta * cosTheta1 + cosTheta2);
return 0.5f * (pPara * pPara + pPerp * pPerp);
}
}
__device float fresnel_dielectric_cos(float cosi, float eta)
{
// compute fresnel reflectance without explicitly computing
// the refracted direction
float c = fabsf(cosi);
float g = eta * eta - 1 + c * c;
if(g > 0) {
g = sqrtf(g);
float A = (g - c)/(g + c);
float B = (c *(g + c)- 1)/(c *(g - c)+ 1);
return 0.5f * A * A *(1 + B * B);
}
return 1.0f; // TIR(no refracted component)
}
__device float fresnel_conductor(float cosi, float eta, float k)
{
float tmp_f = eta * eta + k * k;
float tmp = tmp_f * cosi * cosi;
float Rparl2 = (tmp - (2.0f * eta * cosi) + 1)/
(tmp + (2.0f * eta * cosi) + 1);
float Rperp2 = (tmp_f - (2.0f * eta * cosi) + cosi * cosi)/
(tmp_f + (2.0f * eta * cosi) + cosi * cosi);
return(Rparl2 + Rperp2) * 0.5f;
}
__device float smooth_step(float edge0, float edge1, float x)
{
float result;
if(x < edge0) result = 0.0f;
else if(x >= edge1) result = 1.0f;
else {
float t = (x - edge0)/(edge1 - edge0);
result = (3.0f-2.0f*t)*(t*t);
}
return result;
}
CCL_NAMESPACE_END
#endif /* __OSL_BSDF_H__ */

@ -49,17 +49,12 @@ __device void emissive_sample(const float3 Ng, float randu, float randv,
/* todo: not implemented and used yet */
}
__device float3 emissive_eval(const float3 Ng, const float3 I)
__device float3 emissive_simple_eval(const float3 Ng, const float3 I)
{
float res = emissive_pdf(Ng, I);
return make_float3(res, res, res);
}
__device float3 svm_emissive_eval(ShaderData *sd, ShaderClosure *sc)
{
return emissive_eval(sd->Ng, sd->I);
}
CCL_NAMESPACE_END

@ -53,8 +53,13 @@ __device float3 volume_transparent_eval_phase(const ShaderClosure *sc, const flo
/* VOLUME CLOSURE */
__device float3 volume_eval_phase(const ShaderClosure *sc, const float3 omega_in, const float3 omega_out)
__device float3 volume_eval_phase(KernelGlobals *kg, const ShaderClosure *sc, const float3 omega_in, const float3 omega_out)
{
#ifdef __OSL__
if(kg->osl && sc->prim)
return OSLShader::volume_eval_phase(sc, omega_in, omega_out);
#endif
float3 eval;
switch(sc->type) {

@ -35,7 +35,7 @@ __device void kernel_shader_evaluate(KernelGlobals *kg, uint4 *input, float4 *ou
/* evaluate */
float3 P = sd.P;
shader_eval_displacement(kg, &sd);
shader_eval_displacement(kg, &sd, SHADER_CONTEXT_MAIN);
out = sd.P - P;
}
else { // SHADER_EVAL_BACKGROUND
@ -63,7 +63,7 @@ __device void kernel_shader_evaluate(KernelGlobals *kg, uint4 *input, float4 *ou
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
out = shader_eval_background(kg, &sd, flag);
out = shader_eval_background(kg, &sd, flag, SHADER_CONTEXT_MAIN);
}
shader_release(kg, &sd);

@ -42,7 +42,7 @@ __device float3 direct_emissive_eval(KernelGlobals *kg, float rando,
ray.time = time;
#endif
shader_setup_from_background(kg, &sd, &ray);
eval = shader_eval_background(kg, &sd, 0);
eval = shader_eval_background(kg, &sd, 0, SHADER_CONTEXT_EMISSION);
}
else
#endif
@ -52,7 +52,7 @@ __device float3 direct_emissive_eval(KernelGlobals *kg, float rando,
/* no path flag, we're evaluating this for all closures. that's weak but
* we'd have to do multiple evaluations otherwise */
shader_eval_surface(kg, &sd, rando, 0);
shader_eval_surface(kg, &sd, rando, 0, SHADER_CONTEXT_EMISSION);
/* evaluate emissive closure */
if(sd.flag & SD_EMISSION)
@ -170,7 +170,7 @@ __device float3 indirect_background(KernelGlobals *kg, Ray *ray, int path_flag,
/* evaluate background closure */
ShaderData sd;
shader_setup_from_background(kg, &sd, ray);
float3 L = shader_eval_background(kg, &sd, path_flag);
float3 L = shader_eval_background(kg, &sd, path_flag, SHADER_CONTEXT_EMISSION);
shader_release(kg, &sd);
#ifdef __BACKGROUND_MIS__

@ -207,7 +207,7 @@ __device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ra
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, ray);
shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW);
shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
throughput *= shader_bsdf_transparency(kg, &sd);
@ -272,7 +272,7 @@ __device float4 kernel_path_progressive(KernelGlobals *kg, RNG *rng, int sample,
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
shader_eval_surface(kg, &sd, rbsdf, state.flag);
shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput);
@ -478,7 +478,7 @@ __device void kernel_path_indirect(KernelGlobals *kg, RNG *rng, int sample, Ray
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
shader_eval_surface(kg, &sd, rbsdf, state.flag);
shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_INDIRECT);
shader_merge_closures(kg, &sd);
/* blurring of bsdf after bounces, for rays that have a small likelihood
@ -666,7 +666,7 @@ __device float4 kernel_path_non_progressive(KernelGlobals *kg, RNG *rng, int sam
ShaderData sd;
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
shader_eval_surface(kg, &sd, rbsdf, state.flag);
shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
shader_merge_closures(kg, &sd);
kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput);

@ -26,11 +26,11 @@
*
*/
#include "closure/bsdf_util.h"
#include "closure/bsdf.h"
#include "closure/emissive.h"
#include "closure/volume.h"
#include "svm/svm_bsdf.h"
#include "svm/svm.h"
CCL_NAMESPACE_BEGIN
@ -56,11 +56,6 @@ __device_noinline void shader_setup_object_transforms(KernelGlobals *kg, ShaderD
__device_inline void shader_setup_from_ray(KernelGlobals *kg, ShaderData *sd,
const Intersection *isect, const Ray *ray)
{
#ifdef __OSL__
if (kg->osl)
OSLShader::init(kg, sd);
#endif
/* fetch triangle data */
int prim = kernel_tex_fetch(__prim_index, isect->prim);
float4 Ns = kernel_tex_fetch(__tri_normal, prim);
@ -142,11 +137,6 @@ __device void shader_setup_from_sample(KernelGlobals *kg, ShaderData *sd,
const float3 P, const float3 Ng, const float3 I,
int shader, int object, int prim, float u, float v, float t, float time)
{
#ifdef __OSL__
if (kg->osl)
OSLShader::init(kg, sd);
#endif
/* vectors */
sd->P = P;
sd->N = Ng;
@ -273,11 +263,6 @@ __device void shader_setup_from_displace(KernelGlobals *kg, ShaderData *sd,
__device_inline void shader_setup_from_background(KernelGlobals *kg, ShaderData *sd, const Ray *ray)
{
#ifdef __OSL__
if (kg->osl)
OSLShader::init(kg, sd);
#endif
/* vectors */
sd->P = ray->D;
sd->N = -sd->P;
@ -320,9 +305,8 @@ __device_inline void shader_setup_from_background(KernelGlobals *kg, ShaderData
#ifdef __MULTI_CLOSURE__
#ifdef __OSL__
__device_inline void _shader_bsdf_multi_eval_osl(const ShaderData *sd, const float3 omega_in, float *pdf,
int skip_bsdf, BsdfEval *bsdf_eval, float sum_pdf, float sum_sample_weight)
__device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, const ShaderData *sd, const float3 omega_in, float *pdf,
int skip_bsdf, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
for(int i = 0; i< sd->num_closure; i++) {
if(i == skip_bsdf)
@ -332,38 +316,10 @@ __device_inline void _shader_bsdf_multi_eval_osl(const ShaderData *sd, const flo
if(CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = OSLShader::bsdf_eval(sd, sc, omega_in, bsdf_pdf);
float3 eval = bsdf_eval(kg, sd, sc, omega_in, &bsdf_pdf);
if(bsdf_pdf != 0.0f) {
bsdf_eval_accum(bsdf_eval, sc->type, eval*sc->weight);
sum_pdf += bsdf_pdf*sc->sample_weight;
}
sum_sample_weight += sc->sample_weight;
}
}
*pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f;
}
#endif
__device_inline void _shader_bsdf_multi_eval_svm(const ShaderData *sd, const float3 omega_in, float *pdf,
int skip_bsdf, BsdfEval *bsdf_eval, float sum_pdf, float sum_sample_weight)
{
for(int i = 0; i< sd->num_closure; i++) {
if(i == skip_bsdf)
continue;
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = svm_bsdf_eval(sd, sc, omega_in, &bsdf_pdf);
if(bsdf_pdf != 0.0f) {
bsdf_eval_accum(bsdf_eval, sc->type, eval*sc->weight);
bsdf_eval_accum(result_eval, sc->type, eval*sc->weight);
sum_pdf += bsdf_pdf*sc->sample_weight;
}
@ -382,17 +338,12 @@ __device void shader_bsdf_eval(KernelGlobals *kg, const ShaderData *sd,
#ifdef __MULTI_CLOSURE__
bsdf_eval_init(eval, NBUILTIN_CLOSURES, make_float3(0.0f, 0.0f, 0.0f), kernel_data.film.use_light_pass);
#ifdef __OSL__
if (kg->osl)
return _shader_bsdf_multi_eval_osl(sd, omega_in, pdf, -1, eval, 0.0f, 0.0f);
else
#endif
return _shader_bsdf_multi_eval_svm(sd, omega_in, pdf, -1, eval, 0.0f, 0.0f);
return _shader_bsdf_multi_eval(kg, sd, omega_in, pdf, -1, eval, 0.0f, 0.0f);
#else
const ShaderClosure *sc = &sd->closure;
*pdf = 0.0f;
*eval = svm_bsdf_eval(sd, sc, omega_in, pdf)*sc->weight;
*eval = bsdf_eval(kg, sd, sc, omega_in, pdf)*sc->weight;
#endif
}
@ -439,24 +390,14 @@ __device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd,
float3 eval;
*pdf = 0.0f;
#ifdef __OSL__
if (kg->osl)
label = OSLShader::bsdf_sample(sd, sc, randu, randv, eval, *omega_in, *domega_in, *pdf);
else
#endif
label = svm_bsdf_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f) {
bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);
if(sd->num_closure > 1) {
float sweight = sc->sample_weight;
#ifdef __OSL__
if (kg->osl)
_shader_bsdf_multi_eval_osl(sd, *omega_in, pdf, sampled, bsdf_eval, *pdf*sweight, sweight);
else
#endif
_shader_bsdf_multi_eval_svm(sd, *omega_in, pdf, sampled, bsdf_eval, *pdf*sweight, sweight);
_shader_bsdf_multi_eval(kg, sd, *omega_in, pdf, sampled, bsdf_eval, *pdf*sweight, sweight);
}
}
@ -464,7 +405,7 @@ __device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd,
#else
/* sample the single closure that we picked */
*pdf = 0.0f;
int label = svm_bsdf_sample(sd, &sd->closure, randu, randv, bsdf_eval, omega_in, domega_in, pdf);
int label = bsdf_sample(kg, sd, &sd->closure, randu, randv, bsdf_eval, omega_in, domega_in, pdf);
*bsdf_eval *= sd->closure.weight;
return label;
#endif
@ -478,12 +419,7 @@ __device int shader_bsdf_sample_closure(KernelGlobals *kg, const ShaderData *sd,
float3 eval;
*pdf = 0.0f;
#ifdef __OSL__
if (kg->osl)
label = OSLShader::bsdf_sample(sd, sc, randu, randv, eval, *omega_in, *domega_in, *pdf);
else
#endif
label = svm_bsdf_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f)
bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);
@ -497,17 +433,11 @@ __device void shader_bsdf_blur(KernelGlobals *kg, ShaderData *sd, float roughnes
for(int i = 0; i< sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
#ifdef __OSL__
if (kg->osl)
OSLShader::bsdf_blur(sc, roughness);
else
#endif
svm_bsdf_blur(sc, roughness);
}
if(CLOSURE_IS_BSDF(sc->type))
bsdf_blur(kg, sc, roughness);
}
#else
svm_bsdf_blur(&sd->closure, roughness);
bsdf_blur(kg, &sd->closure, roughness);
#endif
}
@ -635,6 +565,16 @@ __device float3 shader_bsdf_ao(KernelGlobals *kg, ShaderData *sd, float ao_facto
/* Emission */
__device float3 emissive_eval(KernelGlobals *kg, ShaderData *sd, ShaderClosure *sc)
{
#ifdef __OSL__
if(kg->osl && sc->prim)
return OSLShader::emissive_eval(sd, sc);
#endif
return emissive_simple_eval(sd->Ng, sd->I);
}
__device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd)
{
float3 eval;
@ -644,18 +584,11 @@ __device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd)
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_EMISSION(sc->type)) {
#ifdef __OSL__
if (kg->osl)
eval += OSLShader::emissive_eval(sd, sc)*sc->weight;
else
#endif
eval += svm_emissive_eval(sd, sc)*sc->weight;
}
if(CLOSURE_IS_EMISSION(sc->type))
eval += emissive_eval(kg, sd, sc)*sc->weight;
}
#else
eval = svm_emissive_eval(sd, &sd->closure)*sd->closure.weight;
eval = emissive_eval(kg, sd, &sd->closure)*sd->closure.weight;
#endif
return eval;
@ -687,11 +620,11 @@ __device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
/* Surface Evaluation */
__device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
float randb, int path_flag)
float randb, int path_flag, ShaderContext ctx)
{
#ifdef __OSL__
if (kg->osl)
OSLShader::eval_surface(kg, sd, randb, path_flag);
OSLShader::eval_surface(kg, sd, randb, path_flag, ctx);
else
#endif
{
@ -706,11 +639,11 @@ __device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
/* Background Evaluation */
__device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag)
__device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag, ShaderContext ctx)
{
#ifdef __OSL__
if (kg->osl)
return OSLShader::eval_background(kg, sd, path_flag);
return OSLShader::eval_background(kg, sd, path_flag, ctx);
else
#endif
@ -753,31 +686,25 @@ __device float3 shader_volume_eval_phase(KernelGlobals *kg, ShaderData *sd,
for(int i = 0; i< sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_VOLUME(sc->type)) {
#ifdef __OSL__
if (kg->osl)
eval += OSLShader::volume_eval_phase(sc, omega_in, omega_out);
else
#endif
eval += volume_eval_phase(sc, omega_in, omega_out);
}
if(CLOSURE_IS_VOLUME(sc->type))
eval += volume_eval_phase(kg, sc, omega_in, omega_out);
}
return eval;
#else
return volume_eval_phase(&sd->closure, omega_in, omega_out);
return volume_eval_phase(kg, &sd->closure, omega_in, omega_out);
#endif
}
/* Volume Evaluation */
__device void shader_eval_volume(KernelGlobals *kg, ShaderData *sd,
float randb, int path_flag)
float randb, int path_flag, ShaderContext ctx)
{
#ifdef __SVM__
#ifdef __OSL__
if (kg->osl)
OSLShader::eval_volume(kg, sd, randb, path_flag);
OSLShader::eval_volume(kg, sd, randb, path_flag, ctx);
else
#endif
svm_eval_nodes(kg, sd, SHADER_TYPE_VOLUME, randb, path_flag);
@ -786,13 +713,13 @@ __device void shader_eval_volume(KernelGlobals *kg, ShaderData *sd,
/* Displacement Evaluation */
__device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd)
__device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd, ShaderContext ctx)
{
/* this will modify sd->P */
#ifdef __SVM__
#ifdef __OSL__
if (kg->osl)
OSLShader::eval_displacement(kg, sd);
OSLShader::eval_displacement(kg, sd, ctx);
else
#endif
svm_eval_nodes(kg, sd, SHADER_TYPE_DISPLACEMENT, 0.0f, 0);
@ -818,7 +745,6 @@ __device bool shader_transparent_shadow(KernelGlobals *kg, Intersection *isect)
#ifdef __NON_PROGRESSIVE__
__device void shader_merge_closures(KernelGlobals *kg, ShaderData *sd)
{
#ifndef __OSL__
/* merge identical closures, better when we sample a single closure at a time */
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sci = &sd->closure[i];
@ -826,7 +752,7 @@ __device void shader_merge_closures(KernelGlobals *kg, ShaderData *sd)
for(int j = i + 1; j < sd->num_closure; j++) {
ShaderClosure *scj = &sd->closure[j];
if(sci->type == scj->type && sci->data0 == scj->data0 && sci->data1 == scj->data1) {
if(!sci->prim && sci->type == scj->type && sci->data0 == scj->data0 && sci->data1 == scj->data1) {
sci->weight += scj->weight;
sci->sample_weight += scj->sample_weight;
@ -838,7 +764,6 @@ __device void shader_merge_closures(KernelGlobals *kg, ShaderData *sd)
}
}
}
#endif
}
#endif
@ -846,10 +771,7 @@ __device void shader_merge_closures(KernelGlobals *kg, ShaderData *sd)
__device void shader_release(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __OSL__
if (kg->osl)
OSLShader::release(kg, sd);
#endif
/* nothing to do currently */
}
CCL_NAMESPACE_END

@ -379,6 +379,18 @@ typedef struct ShaderClosure {
#endif
} ShaderClosure;
/* Shader Context
*
* For OSL we recycle a fixed number of contexts for speed */
typedef enum ShaderContext {
SHADER_CONTEXT_MAIN = 0,
SHADER_CONTEXT_INDIRECT = 1,
SHADER_CONTEXT_EMISSION = 2,
SHADER_CONTEXT_SHADOW = 3,
SHADER_CONTEXT_NUM = 4
} ShaderContext;
/* Shader Data
*
* Main shader state at a point on the surface or in a volume. All coordinates
@ -466,11 +478,6 @@ typedef struct ShaderData {
/* Closure data, with a single sampled closure for low memory usage */
ShaderClosure closure;
#endif
#ifdef __OSL__
/* OSL context */
void *osl_ctx;
#endif
} ShaderData;
/* Constrant Kernel Data

@ -55,7 +55,7 @@ public:
void setup()
{
sc.N = TO_FLOAT3(N);
sc.prim = this;
m_shaderdata_flag = bsdf_diffuse_ramp_setup(&sc);
for(int i = 0; i < 8; i++)
@ -101,7 +101,7 @@ public:
ClosureParam *closure_bsdf_diffuse_ramp_params()
{
static ClosureParam params[] = {
CLOSURE_VECTOR_PARAM(DiffuseRampClosure, N),
CLOSURE_FLOAT3_PARAM(DiffuseRampClosure, sc.N),
CLOSURE_COLOR_ARRAY_PARAM(DiffuseRampClosure, colors, 8),
CLOSURE_STRING_KEYPARAM("label"),
CLOSURE_FINISH_PARAM(DiffuseRampClosure)

@ -54,7 +54,7 @@ public:
void setup()
{
sc.N = TO_FLOAT3(N);
sc.prim = this;
m_shaderdata_flag = bsdf_phong_ramp_setup(&sc);
for(int i = 0; i < 8; i++)
@ -100,7 +100,7 @@ public:
ClosureParam *closure_bsdf_phong_ramp_params()
{
static ClosureParam params[] = {
CLOSURE_VECTOR_PARAM(PhongRampClosure, N),
CLOSURE_FLOAT3_PARAM(PhongRampClosure, sc.N),
CLOSURE_FLOAT_PARAM(PhongRampClosure, sc.data0),
CLOSURE_COLOR_ARRAY_PARAM(PhongRampClosure, colors, 8),
CLOSURE_STRING_KEYPARAM("label"),

@ -65,7 +65,7 @@ public:
Color3 eval(const Vec3 &Ng, const Vec3 &omega_out) const
{
float3 result = emissive_eval(TO_FLOAT3(Ng), TO_FLOAT3(omega_out));
float3 result = emissive_simple_eval(TO_FLOAT3(Ng), TO_FLOAT3(omega_out));
return TO_COLOR3(result);
}

@ -43,7 +43,7 @@
#include "kernel_types.h"
#include "kernel_montecarlo.h"
#include "closure/bsdf.h"
#include "closure/bsdf_util.h"
#include "closure/bsdf_ashikhmin_velvet.h"
#include "closure/bsdf_diffuse.h"
#include "closure/bsdf_microfacet.h"
@ -62,34 +62,34 @@ using namespace OSL;
/* BSDF class definitions */
BSDF_CLOSURE_CLASS_BEGIN(Diffuse, diffuse, diffuse, LABEL_DIFFUSE)
CLOSURE_VECTOR_PARAM(DiffuseClosure, N),
CLOSURE_FLOAT3_PARAM(DiffuseClosure, sc.N),
BSDF_CLOSURE_CLASS_END(Diffuse, diffuse)
BSDF_CLOSURE_CLASS_BEGIN(Translucent, translucent, translucent, LABEL_DIFFUSE)
CLOSURE_VECTOR_PARAM(TranslucentClosure, N),
CLOSURE_FLOAT3_PARAM(TranslucentClosure, sc.N),
BSDF_CLOSURE_CLASS_END(Translucent, translucent)
BSDF_CLOSURE_CLASS_BEGIN(OrenNayar, oren_nayar, oren_nayar, LABEL_DIFFUSE)
CLOSURE_VECTOR_PARAM(OrenNayarClosure, N),
CLOSURE_FLOAT3_PARAM(OrenNayarClosure, sc.N),
CLOSURE_FLOAT_PARAM(OrenNayarClosure, sc.data0),
BSDF_CLOSURE_CLASS_END(OrenNayar, oren_nayar)
BSDF_CLOSURE_CLASS_BEGIN(Reflection, reflection, reflection, LABEL_SINGULAR)
CLOSURE_VECTOR_PARAM(ReflectionClosure, N),
CLOSURE_FLOAT3_PARAM(ReflectionClosure, sc.N),
BSDF_CLOSURE_CLASS_END(Reflection, reflection)
BSDF_CLOSURE_CLASS_BEGIN(Refraction, refraction, refraction, LABEL_SINGULAR)
CLOSURE_VECTOR_PARAM(RefractionClosure, N),
CLOSURE_FLOAT3_PARAM(RefractionClosure, sc.N),
CLOSURE_FLOAT_PARAM(RefractionClosure, sc.data0),
BSDF_CLOSURE_CLASS_END(Refraction, refraction)
BSDF_CLOSURE_CLASS_BEGIN(WestinBackscatter, westin_backscatter, westin_backscatter, LABEL_GLOSSY)
CLOSURE_VECTOR_PARAM(WestinBackscatterClosure, N),
CLOSURE_FLOAT3_PARAM(WestinBackscatterClosure, sc.N),
CLOSURE_FLOAT_PARAM(WestinBackscatterClosure, sc.data0),
BSDF_CLOSURE_CLASS_END(WestinBackscatter, westin_backscatter)
BSDF_CLOSURE_CLASS_BEGIN(WestinSheen, westin_sheen, westin_sheen, LABEL_DIFFUSE)
CLOSURE_VECTOR_PARAM(WestinSheenClosure, N),
CLOSURE_FLOAT3_PARAM(WestinSheenClosure, sc.N),
CLOSURE_FLOAT_PARAM(WestinSheenClosure, sc.data0),
BSDF_CLOSURE_CLASS_END(WestinSheen, westin_sheen)
@ -97,35 +97,35 @@ BSDF_CLOSURE_CLASS_BEGIN(Transparent, transparent, transparent, LABEL_SINGULAR)
BSDF_CLOSURE_CLASS_END(Transparent, transparent)
BSDF_CLOSURE_CLASS_BEGIN(AshikhminVelvet, ashikhmin_velvet, ashikhmin_velvet, LABEL_DIFFUSE)
CLOSURE_VECTOR_PARAM(AshikhminVelvetClosure, N),
CLOSURE_FLOAT3_PARAM(AshikhminVelvetClosure, sc.N),
CLOSURE_FLOAT_PARAM(AshikhminVelvetClosure, sc.data0),
BSDF_CLOSURE_CLASS_END(AshikhminVelvet, ashikhmin_velvet)
BSDF_CLOSURE_CLASS_BEGIN(Ward, ward, ward, LABEL_GLOSSY)
CLOSURE_VECTOR_PARAM(WardClosure, N),
CLOSURE_VECTOR_PARAM(WardClosure, T),
CLOSURE_FLOAT3_PARAM(WardClosure, sc.N),
CLOSURE_FLOAT3_PARAM(WardClosure, sc.T),
CLOSURE_FLOAT_PARAM(WardClosure, sc.data0),
CLOSURE_FLOAT_PARAM(WardClosure, sc.data1),
BSDF_CLOSURE_CLASS_END(Ward, ward)
BSDF_CLOSURE_CLASS_BEGIN(MicrofacetGGX, microfacet_ggx, microfacet_ggx, LABEL_GLOSSY)
CLOSURE_VECTOR_PARAM(MicrofacetGGXClosure, N),
CLOSURE_FLOAT3_PARAM(MicrofacetGGXClosure, sc.N),
CLOSURE_FLOAT_PARAM(MicrofacetGGXClosure, sc.data0),
BSDF_CLOSURE_CLASS_END(MicrofacetGGX, microfacet_ggx)
BSDF_CLOSURE_CLASS_BEGIN(MicrofacetBeckmann, microfacet_beckmann, microfacet_beckmann, LABEL_GLOSSY)
CLOSURE_VECTOR_PARAM(MicrofacetBeckmannClosure, N),
CLOSURE_FLOAT3_PARAM(MicrofacetBeckmannClosure, sc.N),
CLOSURE_FLOAT_PARAM(MicrofacetBeckmannClosure, sc.data0),
BSDF_CLOSURE_CLASS_END(MicrofacetBeckmann, microfacet_beckmann)
BSDF_CLOSURE_CLASS_BEGIN(MicrofacetGGXRefraction, microfacet_ggx_refraction, microfacet_ggx, LABEL_GLOSSY)
CLOSURE_VECTOR_PARAM(MicrofacetGGXRefractionClosure, N),
CLOSURE_FLOAT3_PARAM(MicrofacetGGXRefractionClosure, sc.N),
CLOSURE_FLOAT_PARAM(MicrofacetGGXRefractionClosure, sc.data0),
CLOSURE_FLOAT_PARAM(MicrofacetGGXRefractionClosure, sc.data1),
BSDF_CLOSURE_CLASS_END(MicrofacetGGXRefraction, microfacet_ggx_refraction)
BSDF_CLOSURE_CLASS_BEGIN(MicrofacetBeckmannRefraction, microfacet_beckmann_refraction, microfacet_beckmann, LABEL_GLOSSY)
CLOSURE_VECTOR_PARAM(MicrofacetBeckmannRefractionClosure, N),
CLOSURE_FLOAT3_PARAM(MicrofacetBeckmannRefractionClosure, sc.N),
CLOSURE_FLOAT_PARAM(MicrofacetBeckmannRefractionClosure, sc.data0),
CLOSURE_FLOAT_PARAM(MicrofacetBeckmannRefractionClosure, sc.data1),
BSDF_CLOSURE_CLASS_END(MicrofacetBeckmannRefraction, microfacet_beckmann_refraction)

@ -70,8 +70,11 @@ void name(RendererServices *, int id, void *data) \
#define CLOSURE_PREPARE_STATIC(name, classname) static CLOSURE_PREPARE(name, classname)
#define TO_VEC3(v) (*(OSL::Vec3 *)&(v))
#define TO_COLOR3(v) (*(OSL::Color3 *)&(v))
#define CLOSURE_FLOAT3_PARAM(st, fld) \
{ TypeDesc::TypeVector, reckless_offsetof(st, fld), NULL, sizeof(OSL::Vec3) }
#define TO_VEC3(v) OSL::Vec3(v.x, v.y, v.z)
#define TO_COLOR3(v) OSL::Color3(v.x, v.y, v.z)
#define TO_FLOAT3(v) make_float3(v[0], v[1], v[2])
/* BSDF */
@ -79,7 +82,6 @@ void name(RendererServices *, int id, void *data) \
class CBSDFClosure : public OSL::ClosurePrimitive {
public:
ShaderClosure sc;
OSL::Vec3 N, T;
CBSDFClosure(int scattering) : OSL::ClosurePrimitive(BSDF),
m_scattering_label(scattering), m_shaderdata_flag(0) { }
@ -87,7 +89,6 @@ public:
int scattering() const { return m_scattering_label; }
int shaderdata_flag() const { return m_shaderdata_flag; }
ClosureType shaderclosure_type() const { return sc.type; }
virtual void blur(float roughness) = 0;
virtual float3 eval_reflect(const float3 &omega_out, const float3 &omega_in, float &pdf) const = 0;
@ -114,8 +115,7 @@ public: \
\
void setup() \
{ \
sc.N = TO_FLOAT3(N); \
sc.T = TO_FLOAT3(T); \
sc.prim = NULL; \
m_shaderdata_flag = bsdf_##lower##_setup(&sc); \
} \
\

@ -75,10 +75,21 @@ struct OSLGlobals {
vector<ustring> object_names;
};
/* trace() call result */
struct OSLTraceData {
Ray ray;
Intersection isect;
ShaderData sd;
bool setup;
bool init;
};
/* thread key for thread specific data lookup */
struct OSLThreadData {
OSL::ShaderGlobals globals;
OSL::PerThreadInfo *thread_info;
OSLTraceData tracedata;
OSL::ShadingContext *context[SHADER_CONTEXT_NUM];
};
CCL_NAMESPACE_END

@ -47,7 +47,7 @@ CCL_NAMESPACE_BEGIN
/* RenderServices implementation */
#define TO_MATRIX44(m) (*(OSL::Matrix44 *)&(m))
#define COPY_MATRIX44(m1, m2) memcpy(m1, m2, sizeof(*m2))
/* static ustrings */
ustring OSLRenderServices::u_distance("distance");
@ -121,7 +121,7 @@ bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, OSL::TransformationPtr
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif
tfm = transform_transpose(tfm);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
@ -151,7 +151,7 @@ bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, OSL::Transform
Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
#endif
itfm = transform_transpose(itfm);
result = TO_MATRIX44(itfm);
COPY_MATRIX44(&result, &itfm);
return true;
}
@ -166,22 +166,22 @@ bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, ustring from, float ti
if (from == u_ndc) {
Transform tfm = transform_transpose(transform_quick_inverse(kernel_data.cam.worldtondc));
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.rastertoworld);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.screentoworld);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.cameratoworld);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
@ -194,22 +194,22 @@ bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, ustring to, fl
if (to == u_ndc) {
Transform tfm = transform_transpose(kernel_data.cam.worldtondc);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoraster);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoscreen);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.worldtocamera);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
@ -232,7 +232,7 @@ bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, OSL::TransformationPtr
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif
tfm = transform_transpose(tfm);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
@ -257,7 +257,7 @@ bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, OSL::Transform
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
#endif
tfm = transform_transpose(tfm);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
@ -272,22 +272,22 @@ bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, ustring from)
if (from == u_ndc) {
Transform tfm = transform_transpose(transform_quick_inverse(kernel_data.cam.worldtondc));
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.rastertoworld);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.screentoworld);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.cameratoworld);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
@ -300,22 +300,22 @@ bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, ustring to)
if (to == u_ndc) {
Transform tfm = transform_transpose(kernel_data.cam.worldtondc);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoraster);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoscreen);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.worldtocamera);
result = TO_MATRIX44(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
@ -815,13 +815,10 @@ bool OSLRenderServices::trace(TraceOpt &options, OSL::ShaderGlobals *sg,
ray.dD.dy = TO_FLOAT3(dRdy);
/* allocate trace data */
TraceData *tracedata = new TraceData();
OSLTraceData *tracedata = (OSLTraceData*)sg->tracedata;
tracedata->ray = ray;
tracedata->setup = false;
if(sg->tracedata)
delete (TraceData*)sg->tracedata;
sg->tracedata = tracedata;
tracedata->init = true;
/* raytrace */
return scene_intersect(kernel_globals, &ray, ~0, &tracedata->isect);
@ -831,9 +828,9 @@ bool OSLRenderServices::trace(TraceOpt &options, OSL::ShaderGlobals *sg,
bool OSLRenderServices::getmessage(OSL::ShaderGlobals *sg, ustring source, ustring name,
TypeDesc type, void *val, bool derivatives)
{
TraceData *tracedata = (TraceData*)sg->tracedata;
OSLTraceData *tracedata = (OSLTraceData*)sg->tracedata;
if(source == u_trace && tracedata) {
if(source == u_trace && tracedata->init) {
if(name == u_hit) {
return set_attribute_int((tracedata->isect.prim != ~0), type, derivatives, val);
}

@ -106,13 +106,6 @@ public:
static bool get_object_standard_attribute(KernelGlobals *kg, ShaderData *sd, ustring name,
TypeDesc type, bool derivatives, void *val);
struct TraceData {
Ray ray;
Intersection isect;
ShaderData sd;
bool setup;
};
static ustring u_distance;
static ustring u_index;
static ustring u_camera;

@ -51,8 +51,13 @@ void OSLShader::thread_init(KernelGlobals *kg, KernelGlobals *kernel_globals, OS
OSLThreadData *tdata = new OSLThreadData();
memset(&tdata->globals, 0, sizeof(OSL::ShaderGlobals));
tdata->globals.tracedata = &tdata->tracedata;
tdata->globals.flipHandedness = false;
tdata->thread_info = ss->create_thread_info();
for(int i = 0; i < SHADER_CONTEXT_NUM; i++)
tdata->context[i] = ss->get_context(tdata->thread_info);
kg->osl_ss = (OSLShadingSystem*)ss;
kg->osl_tdata = tdata;
}
@ -65,6 +70,9 @@ void OSLShader::thread_free(KernelGlobals *kg)
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
for(int i = 0; i < SHADER_CONTEXT_NUM; i++)
ss->release_context(tdata->context[i]);
ss->destroy_thread_info(tdata->thread_info);
delete tdata;
@ -77,8 +85,10 @@ void OSLShader::thread_free(KernelGlobals *kg)
/* Globals */
static void shaderdata_to_shaderglobals(KernelGlobals *kg, ShaderData *sd,
int path_flag, OSL::ShaderGlobals *globals)
int path_flag, OSLThreadData *tdata)
{
OSL::ShaderGlobals *globals = &tdata->globals;
/* copy from shader data to shader globals */
globals->P = TO_VEC3(sd->P);
globals->dPdx = TO_VEC3(sd->dP.dx);
@ -100,15 +110,11 @@ static void shaderdata_to_shaderglobals(KernelGlobals *kg, ShaderData *sd,
globals->time = sd->time;
/* booleans */
globals->raytype = path_flag; /* todo: add our own ray types */
globals->raytype = path_flag;
globals->backfacing = (sd->flag & SD_BACKFACING);
/* don't know yet if we need this */
globals->flipHandedness = false;
/* shader data to be used in services callbacks */
globals->renderstate = sd;
globals->tracedata = NULL;
/* hacky, we leave it to services to fetch actual object matrix */
globals->shader2common = sd;
@ -116,6 +122,9 @@ static void shaderdata_to_shaderglobals(KernelGlobals *kg, ShaderData *sd,
/* must be set to NULL before execute */
globals->Ci = NULL;
/* clear trace data */
tdata->tracedata.init = false;
}
/* Surface */
@ -132,14 +141,10 @@ static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
if (prim) {
ShaderClosure sc;
sc.prim = prim;
sc.weight = weight;
switch (prim->category()) {
case OSL::ClosurePrimitive::BSDF: {
if (sd->num_closure == MAX_CLOSURE)
return;
CBSDFClosure *bsdf = (CBSDFClosure *)prim;
int scattering = bsdf->scattering();
@ -151,8 +156,13 @@ static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = bsdf->shaderclosure_type();
sc.N = bsdf->sc.N; /* needed for AO */
sc.type = bsdf->sc.type;
sc.N = bsdf->sc.N;
sc.T = bsdf->sc.T;
sc.data0 = bsdf->sc.data0;
sc.data1 = bsdf->sc.data1;
sc.prim = bsdf->sc.prim;
/* add */
if(sc.sample_weight > 1e-5f && sd->num_closure < MAX_CLOSURE) {
@ -170,6 +180,7 @@ static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
sc.sample_weight = sample_weight;
sc.type = CLOSURE_EMISSION_ID;
sc.prim = NULL;
/* flag */
if(sd->num_closure < MAX_CLOSURE) {
@ -179,14 +190,12 @@ static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
break;
}
case AmbientOcclusion: {
if (sd->num_closure == MAX_CLOSURE)
return;
/* sample weight */
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = CLOSURE_AMBIENT_OCCLUSION_ID;
sc.prim = NULL;
if(sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
@ -195,11 +204,9 @@ static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
break;
}
case OSL::ClosurePrimitive::Holdout:
if (sd->num_closure == MAX_CLOSURE)
return;
sc.sample_weight = 0.0f;
sc.type = CLOSURE_HOLDOUT_ID;
sc.prim = NULL;
if(sd->num_closure < MAX_CLOSURE) {
sd->closure[sd->num_closure++] = sc;
@ -226,26 +233,20 @@ static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
}
}
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag)
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag, ShaderContext ctx)
{
/* gather pointers */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *ctx = (OSL::ShadingContext *)sd->osl_ctx;
/* setup shader globals from shader data */
shaderdata_to_shaderglobals(kg, sd, path_flag, globals);
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);
/* execute shader for this point */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
int shader = sd->shader & SHADER_MASK;
if (kg->osl->surface_state[shader])
ss->execute(*ctx, *(kg->osl->surface_state[shader]), *globals);
/* free trace data */
if(globals->tracedata)
delete (OSLRenderServices::TraceData*)globals->tracedata;
ss->execute(*octx, *(kg->osl->surface_state[shader]), *globals);
/* flatten closure tree */
sd->num_closure = 0;
@ -287,24 +288,19 @@ static float3 flatten_background_closure_tree(const OSL::ClosureColor *closure)
return make_float3(0.0f, 0.0f, 0.0f);
}
float3 OSLShader::eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag)
float3 OSLShader::eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag, ShaderContext ctx)
{
/* gather pointers */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *ctx = (OSL::ShadingContext *)sd->osl_ctx;
/* setup shader globals from shader data */
shaderdata_to_shaderglobals(kg, sd, path_flag, globals);
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);
/* execute shader for this point */
if (kg->osl->background_state)
ss->execute(*ctx, *(kg->osl->background_state), *globals);
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
/* free trace data */
if(globals->tracedata)
delete (OSLRenderServices::TraceData*)globals->tracedata;
if (kg->osl->background_state)
ss->execute(*octx, *(kg->osl->background_state), *globals);
/* return background color immediately */
if (globals->Ci)
@ -327,19 +323,16 @@ static void flatten_volume_closure_tree(ShaderData *sd,
if (prim) {
ShaderClosure sc;
sc.prim = prim;
sc.weight = weight;
switch (prim->category()) {
case OSL::ClosurePrimitive::Volume: {
if (sd->num_closure == MAX_CLOSURE)
return;
/* sample weight */
float sample_weight = fabsf(average(weight));
sc.sample_weight = sample_weight;
sc.type = CLOSURE_VOLUME_ID;
sc.prim = NULL;
/* add */
if(sc.sample_weight > 1e-5f && sd->num_closure < MAX_CLOSURE)
@ -368,26 +361,20 @@ static void flatten_volume_closure_tree(ShaderData *sd,
}
}
void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag)
void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag, ShaderContext ctx)
{
/* gather pointers */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *ctx = (OSL::ShadingContext *)sd->osl_ctx;
/* setup shader globals from shader data */
shaderdata_to_shaderglobals(kg, sd, path_flag, globals);
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);
/* execute shader */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
int shader = sd->shader & SHADER_MASK;
if (kg->osl->volume_state[shader])
ss->execute(*ctx, *(kg->osl->volume_state[shader]), *globals);
/* free trace data */
if(globals->tracedata)
delete (OSLRenderServices::TraceData*)globals->tracedata;
ss->execute(*octx, *(kg->osl->volume_state[shader]), *globals);
if (globals->Ci)
flatten_volume_closure_tree(sd, globals->Ci);
@ -395,46 +382,25 @@ void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, float randb, int
/* Displacement */
void OSLShader::eval_displacement(KernelGlobals *kg, ShaderData *sd)
void OSLShader::eval_displacement(KernelGlobals *kg, ShaderData *sd, ShaderContext ctx)
{
/* gather pointers */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *ctx = (OSL::ShadingContext *)sd->osl_ctx;
/* setup shader globals from shader data */
shaderdata_to_shaderglobals(kg, sd, 0, globals);
OSLThreadData *tdata = kg->osl_tdata;
shaderdata_to_shaderglobals(kg, sd, 0, tdata);
/* execute shader */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
OSL::ShadingContext *octx = tdata->context[(int)ctx];
int shader = sd->shader & SHADER_MASK;
if (kg->osl->displacement_state[shader])
ss->execute(*ctx, *(kg->osl->displacement_state[shader]), *globals);
/* free trace data */
if(globals->tracedata)
delete (OSLRenderServices::TraceData*)globals->tracedata;
ss->execute(*octx, *(kg->osl->displacement_state[shader]), *globals);
/* get back position */
sd->P = TO_FLOAT3(globals->P);
}
void OSLShader::init(KernelGlobals *kg, ShaderData *sd)
{
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
sd->osl_ctx = ss->get_context(tdata->thread_info);
}
void OSLShader::release(KernelGlobals *kg, ShaderData *sd)
{
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
ss->release_context((OSL::ShadingContext *)sd->osl_ctx);
}
/* BSDF Closure */
int OSLShader::bsdf_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3& eval, float3& omega_in, differential3& domega_in, float& pdf)

@ -55,10 +55,10 @@ public:
static void thread_free(KernelGlobals *kg);
/* eval */
static void eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag);
static float3 eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag);
static void eval_volume(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag);
static void eval_displacement(KernelGlobals *kg, ShaderData *sd);
static void eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag, ShaderContext ctx);
static float3 eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag, ShaderContext ctx);
static void eval_volume(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag, ShaderContext ctx);
static void eval_displacement(KernelGlobals *kg, ShaderData *sd, ShaderContext ctx);
/* sample & eval */
static int bsdf_sample(const ShaderData *sd, const ShaderClosure *sc,
@ -73,10 +73,6 @@ public:
static float3 volume_eval_phase(const ShaderClosure *sc,
const float3 omega_in, const float3 omega_out);
/* release */
static void init(KernelGlobals *kg, ShaderData *sd);
static void release(KernelGlobals *kg, ShaderData *sd);
/* attributes */
static int find_attribute(KernelGlobals *kg, const ShaderData *sd, uint id);
};

@ -1,279 +0,0 @@
/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "../closure/bsdf_ashikhmin_velvet.h"
#include "../closure/bsdf_diffuse.h"
#include "../closure/bsdf_oren_nayar.h"
#include "../closure/bsdf_phong_ramp.h"
#include "../closure/bsdf_diffuse_ramp.h"
#include "../closure/bsdf_microfacet.h"
#include "../closure/bsdf_reflection.h"
#include "../closure/bsdf_refraction.h"
#include "../closure/bsdf_transparent.h"
#ifdef __ANISOTROPIC__
#include "../closure/bsdf_ward.h"
#endif
#include "../closure/bsdf_westin.h"
CCL_NAMESPACE_BEGIN
__device int svm_bsdf_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, differential3 *domega_in, float *pdf)
{
int label;
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
label = bsdf_diffuse_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
label = bsdf_oren_nayar_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
/*case CLOSURE_BSDF_PHONG_RAMP_ID:
label = bsdf_phong_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
label = bsdf_diffuse_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;*/
case CLOSURE_BSDF_TRANSLUCENT_ID:
label = bsdf_translucent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
label = bsdf_reflection_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
label = bsdf_refraction_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
label = bsdf_transparent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
label = bsdf_microfacet_ggx_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
label = bsdf_microfacet_beckmann_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
label = bsdf_ward_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
label = bsdf_ashikhmin_velvet_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
label = bsdf_westin_backscatter_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
label = bsdf_westin_sheen_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
default:
label = LABEL_NONE;
break;
}
return label;
}
__device float3 svm_bsdf_eval(const ShaderData *sd, const ShaderClosure *sc, const float3 omega_in, float *pdf)
{
float3 eval;
if(dot(sd->Ng, omega_in) >= 0.0f) {
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
eval = bsdf_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_reflect(sc, sd->I, omega_in, pdf);
break;
/*case CLOSURE_BSDF_PHONG_RAMP_ID:
eval = bsdf_phong_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
eval = bsdf_diffuse_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;*/
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
eval = bsdf_ward_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
eval = bsdf_westin_backscatter_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
eval = bsdf_westin_sheen_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
}
else {
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
eval = bsdf_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
eval = bsdf_ward_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
eval = bsdf_westin_backscatter_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
eval = bsdf_westin_sheen_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
}
return eval;
}
__device void svm_bsdf_blur(ShaderClosure *sc, float roughness)
{
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
bsdf_diffuse_blur(sc, roughness);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
bsdf_oren_nayar_blur(sc, roughness);
break;
/*case CLOSURE_BSDF_PHONG_RAMP_ID:
bsdf_phong_ramp_blur(sc, roughness);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
bsdf_diffuse_ramp_blur(sc, roughness);
break;*/
case CLOSURE_BSDF_TRANSLUCENT_ID:
bsdf_translucent_blur(sc, roughness);
break;
case CLOSURE_BSDF_REFLECTION_ID:
bsdf_reflection_blur(sc, roughness);
break;
case CLOSURE_BSDF_REFRACTION_ID:
bsdf_refraction_blur(sc, roughness);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
bsdf_transparent_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
bsdf_microfacet_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
bsdf_microfacet_beckmann_blur(sc, roughness);
break;
#ifdef __ANISOTROPIC__
case CLOSURE_BSDF_WARD_ID:
bsdf_ward_blur(sc, roughness);
break;
#endif
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
bsdf_ashikhmin_velvet_blur(sc, roughness);
break;
case CLOSURE_BSDF_WESTIN_BACKSCATTER_ID:
bsdf_westin_backscatter_blur(sc, roughness);
break;
case CLOSURE_BSDF_WESTIN_SHEEN_ID:
bsdf_westin_sheen_blur(sc, roughness);
break;
#endif
default:
break;
}
}
CCL_NAMESPACE_END