style cleanup: assignment & indentation.

This commit is contained in:
Campbell Barton 2012-06-09 18:56:12 +00:00
parent c6cffe98fa
commit 2c1abe1f58
32 changed files with 500 additions and 484 deletions

@ -172,8 +172,8 @@ static void display()
static void resize(int width, int height)
{
options.width= width;
options.height= height;
options.width = width;
options.height = height;
if(options.session)
options.session->reset(session_buffer_params(), options.session_params.samples);
@ -197,8 +197,8 @@ static int files_parse(int argc, const char *argv[])
static void options_parse(int argc, const char **argv)
{
options.width= 0;
options.height= 0;
options.width = 0;
options.height = 0;
options.filepath = "";
options.session = NULL;
options.quiet = false;

@ -222,14 +222,14 @@ static void blender_camera_viewplane(BlenderCamera *bcam, int width, int height,
}
if(horizontal_fit) {
*aspectratio= xratio/yratio;
xaspect= *aspectratio;
yaspect= 1.0f;
*aspectratio = xratio/yratio;
xaspect = *aspectratio;
yaspect = 1.0f;
}
else {
*aspectratio= yratio/xratio;
xaspect= 1.0f;
yaspect= *aspectratio;
*aspectratio = yratio/xratio;
xaspect = 1.0f;
yaspect = *aspectratio;
}
/* modify aspect for orthographic scale */

@ -46,7 +46,7 @@ static void create_mesh(Scene *scene, Mesh *mesh, BL::Mesh b_mesh, const vector<
float3 *N = attr_N->data_float3();
for(b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v, ++N)
*N= get_float3(v->normal());
*N = get_float3(v->normal());
/* create faces */
BL::Mesh::tessfaces_iterator f;
@ -175,7 +175,7 @@ static void create_subd_mesh(Mesh *mesh, BL::Mesh b_mesh, PointerRNA *cmesh, con
for(b_mesh.tessfaces.begin(f); f != b_mesh.tessfaces.end(); ++f) {
int4 vi = get_int4(f->vertices_raw());
int n= (vi[3] == 0)? 3: 4;
int n = (vi[3] == 0) ? 3: 4;
//int shader = used_shaders[f->material_index()];
if(n == 4)

@ -145,7 +145,7 @@ void BlenderSync::sync_particles(Object *ob, BL::Object b_ob)
for(b_ob.particle_systems.begin(b_psys); b_psys != b_ob.particle_systems.end(); ++b_psys) {
if (use_particle_system(*b_psys)) {
BL::ParticleSystem::particles_iterator b_pa;
for(b_psys->particles.begin(b_pa), index=0; b_pa != b_psys->particles.end(); ++b_pa, ++index) {
for(b_psys->particles.begin(b_pa), index = 0; b_pa != b_psys->particles.end(); ++b_pa, ++index) {
if(use_particle(*b_pa)) {
Particle pa;

@ -193,7 +193,8 @@ CCLDeviceInfo *compute_device_list(DeviceType type)
foreach(DeviceInfo& info, devices) {
if(info.type == type ||
(info.type == DEVICE_MULTI && info.multi_devices[0].type == type)) {
(info.type == DEVICE_MULTI && info.multi_devices[0].type == type))
{
CCLDeviceInfo cinfo = {info.id.c_str(), info.description.c_str(), i++};
device_list.push_back(cinfo);
}
@ -214,7 +215,7 @@ CCL_NAMESPACE_END
void *CCL_python_module_init()
{
PyObject *mod= PyModule_Create(&ccl::module);
PyObject *mod = PyModule_Create(&ccl::module);
#ifdef WITH_OSL
PyModule_AddObject(mod, "with_osl", Py_True);

@ -83,8 +83,8 @@ void BlenderSession::create_session()
SessionParams session_params = BlenderSync::get_session_params(b_userpref, b_scene, background);
/* reset status/progress */
last_status= "";
last_progress= -1.0f;
last_status = "";
last_progress = -1.0f;
/* create scene */
scene = new Scene(scene_params);
@ -292,7 +292,8 @@ void BlenderSession::synchronize()
SessionParams session_params = BlenderSync::get_session_params(b_userpref, b_scene, background);
if(session->params.modified(session_params) ||
scene->params.modified(scene_params)) {
scene->params.modified(scene_params))
{
free_session();
create_session();
session->start();

@ -784,7 +784,9 @@ void BlenderSync::sync_lamps()
if(b_lamp->type() == BL::Lamp::type_POINT ||
b_lamp->type() == BL::Lamp::type_SPOT ||
b_lamp->type() == BL::Lamp::type_AREA)
{
strength = 100.0f;
}
closure = graph->add(new EmissionNode());
closure->input("Color")->value = get_float3(b_lamp->color());

@ -105,10 +105,13 @@ bool BlenderSync::sync_recalc()
BL::BlendData::worlds_iterator b_world;
for(b_data.worlds.begin(b_world); b_world != b_data.worlds.end(); ++b_world)
for(b_data.worlds.begin(b_world); b_world != b_data.worlds.end(); ++b_world) {
if(world_map == b_world->ptr.data &&
(b_world->is_updated() || (b_world->node_tree() && b_world->node_tree().is_updated())))
(b_world->is_updated() || (b_world->node_tree() && b_world->node_tree().is_updated())))
{
world_recalc = true;
}
}
bool recalc =
shader_map.has_recalc() ||

@ -52,7 +52,7 @@ int BVHNode::getSubtreeSize(BVH_STAT stat) const
}
if(!is_leaf())
for(int i=0;i<num_children();i++)
for(int i = 0; i < num_children(); i++)
cnt += get_child(i)->getSubtreeSize(stat);
return cnt;
@ -60,7 +60,7 @@ int BVHNode::getSubtreeSize(BVH_STAT stat) const
void BVHNode::deleteSubtree()
{
for(int i=0;i<num_children();i++)
for(int i = 0; i < num_children(); i++)
if(get_child(i))
get_child(i)->deleteSubtree();
@ -71,7 +71,7 @@ float BVHNode::computeSubtreeSAHCost(const BVHParams& p, float probability) cons
{
float SAH = probability * p.cost(num_children(), num_triangles());
for(int i=0;i<num_children();i++) {
for(int i = 0; i < num_children(); i++) {
BVHNode *child = get_child(i);
SAH += child->computeSubtreeSAHCost(p, probability * child->m_bounds.safe_area()/m_bounds.safe_area());
}

@ -49,9 +49,9 @@ __device void differential_dudv(differential *du, differential *dv, float3 dPdu,
* mainly used for differentials of arbitrary mesh attributes. */
/* find most stable axis to project to 2D */
float xn= fabsf(Ng.x);
float yn= fabsf(Ng.y);
float zn= fabsf(Ng.z);
float xn = fabsf(Ng.x);
float yn = fabsf(Ng.y);
float zn = fabsf(Ng.z);
if(zn < xn || zn < yn) {
if(yn < xn || yn < zn) {

@ -137,9 +137,12 @@ __device_inline float path_state_terminate_probability(KernelGlobals *kg, PathSt
(state->diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) ||
(state->glossy_bounce >= kernel_data.integrator.max_glossy_bounce) ||
(state->transmission_bounce >= kernel_data.integrator.max_transmission_bounce))
{
return 0.0f;
else if(state->bounce <= kernel_data.integrator.min_bounce)
}
else if(state->bounce <= kernel_data.integrator.min_bounce) {
return 1.0f;
}
}
/* probalistic termination */

@ -47,7 +47,7 @@ __device float fresnel_dielectric(float eta, const float3 N,
float cos = dot(N, I), neta;
float3 Nn;
// compute reflection
*R =(2 * cos)* N - I;
*R = (2 * cos)* N - I;
#ifdef __RAY_DIFFERENTIALS__
*dRdx = (2 * dot(N, dIdx)) * N - dIdx;
*dRdy = (2 * dot(N, dIdy)) * N - dIdy;
@ -65,18 +65,18 @@ __device float fresnel_dielectric(float eta, const float3 N,
Nn = -N;
*is_inside = true;
}
*R =(2 * cos)* Nn - I;
*R = (2 * cos)* Nn - I;
float arg = 1 -(neta * neta *(1 -(cos * cos)));
if(arg < 0) {
*T= make_float3(0.0f, 0.0f, 0.0f);
*T = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __RAY_DIFFERENTIALS__
*dTdx= make_float3(0.0f, 0.0f, 0.0f);
*dTdy= make_float3(0.0f, 0.0f, 0.0f);
*dTdx = make_float3(0.0f, 0.0f, 0.0f);
*dTdy = make_float3(0.0f, 0.0f, 0.0f);
#endif
return 1; // total internal reflection
} else {
float dnp = sqrtf(arg);
float nK =(neta * cos)- dnp;
float nK = (neta * cos)- dnp;
*T = -(neta * I)+(nK * Nn);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = -(neta * dIdx) + ((neta - neta * neta * cos / dnp) * dot(dIdx, Nn)) * Nn;
@ -85,8 +85,8 @@ __device float fresnel_dielectric(float eta, const float3 N,
// compute Fresnel terms
float cosTheta1 = cos; // N.R
float cosTheta2 = -dot(Nn, *T);
float pPara =(cosTheta1 - eta * cosTheta2)/(cosTheta1 + eta * cosTheta2);
float pPerp =(eta * cosTheta1 - cosTheta2)/(eta * cosTheta1 + cosTheta2);
float pPara = (cosTheta1 - eta * cosTheta2)/(cosTheta1 + eta * cosTheta2);
float pPerp = (eta * cosTheta1 - cosTheta2)/(eta * cosTheta1 + cosTheta2);
return 0.5f * (pPara * pPara + pPerp * pPerp);
}
}
@ -99,8 +99,8 @@ __device float fresnel_dielectric_cos(float cosi, float eta)
float g = eta * eta - 1 + c * c;
if(g > 0) {
g = sqrtf(g);
float A =(g - c)/(g + c);
float B =(c *(g + c)- 1)/(c *(g - c)+ 1);
float A = (g - c)/(g + c);
float B = (c *(g + c)- 1)/(c *(g - c)+ 1);
return 0.5f * A * A *(1 + B * B);
}
return 1.0f; // TIR(no refracted component)
@ -110,10 +110,10 @@ __device float fresnel_conductor(float cosi, float eta, float k)
{
float tmp_f = eta * eta + k * k;
float tmp = tmp_f * cosi * cosi;
float Rparl2 =(tmp -(2.0f * eta * cosi)+ 1)/
(tmp +(2.0f * eta * cosi)+ 1);
float Rperp2 =(tmp_f -(2.0f * eta * cosi)+ cosi * cosi)/
(tmp_f +(2.0f * eta * cosi)+ cosi * cosi);
float Rparl2 = (tmp - (2.0f * eta * cosi) + 1)/
(tmp + (2.0f * eta * cosi) + 1);
float Rperp2 = (tmp_f - (2.0f * eta * cosi) + cosi * cosi)/
(tmp_f + (2.0f * eta * cosi) + cosi * cosi);
return(Rparl2 + Rperp2) * 0.5f;
}

@ -24,9 +24,9 @@ __device float svm_gradient(float3 p, NodeGradientType type)
{
float x, y, z;
x= p.x;
y= p.y;
z= p.z;
x = p.x;
y = p.y;
z = p.z;
if(type == NODE_BLEND_LINEAR) {
return x;

@ -34,39 +34,39 @@ __device_noinline float3 svm_magic(float3 p, int n, float distortion)
y *= distortion;
if(n > 1) {
x= cosf(x-y-z);
x = cosf(x-y-z);
x *= distortion;
if(n > 2) {
z= sinf(-x-y-z);
z = sinf(-x-y-z);
z *= distortion;
if(n > 3) {
x= -cosf(-x+y-z);
x = -cosf(-x+y-z);
x *= distortion;
if(n > 4) {
y= -sinf(-x+y+z);
y = -sinf(-x+y+z);
y *= distortion;
if(n > 5) {
y= -cosf(-x+y+z);
y = -cosf(-x+y+z);
y *= distortion;
if(n > 6) {
x= cosf(x+y+z);
x = cosf(x+y+z);
x *= distortion;
if(n > 7) {
z= sinf(x+y-z);
z = sinf(x+y-z);
z *= distortion;
if(n > 8) {
x= -cosf(-x-y+z);
x = -cosf(-x-y+z);
x *= distortion;
if(n > 9) {
y= -sinf(x-y+z);
y = -sinf(x-y+z);
y *= distortion;
}
}

@ -248,8 +248,8 @@ __device float3 svm_mix_soft(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 one= make_float3(1.0f, 1.0f, 1.0f);
float3 scr= one - (one - col2)*(one - col1);
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 scr = one - (one - col2)*(one - col1);
return tm*col1 + t*((one - col1)*col2*col1 + col1*scr);
}
@ -259,19 +259,19 @@ __device float3 svm_mix_linear(float t, float3 col1, float3 col2)
float3 outcol = col1;
if(col2.x > 0.5f)
outcol.x= col1.x + t*(2.0f*(col2.x - 0.5f));
outcol.x = col1.x + t*(2.0f*(col2.x - 0.5f));
else
outcol.x= col1.x + t*(2.0f*(col2.x) - 1.0f);
outcol.x = col1.x + t*(2.0f*(col2.x) - 1.0f);
if(col2.y > 0.5f)
outcol.y= col1.y + t*(2.0f*(col2.y - 0.5f));
outcol.y = col1.y + t*(2.0f*(col2.y - 0.5f));
else
outcol.y= col1.y + t*(2.0f*(col2.y) - 1.0f);
outcol.y = col1.y + t*(2.0f*(col2.y) - 1.0f);
if(col2.z > 0.5f)
outcol.z= col1.z + t*(2.0f*(col2.z - 0.5f));
outcol.z = col1.z + t*(2.0f*(col2.z - 0.5f));
else
outcol.z= col1.z + t*(2.0f*(col2.z) - 1.0f);
outcol.z = col1.z + t*(2.0f*(col2.z) - 1.0f);
return outcol;
}

@ -84,9 +84,9 @@ __device uint phash(int kx, int ky, int kz, int3 p)
__device float floorfrac(float x, int* i)
{
float f = floorf(x);
*i = (int)f;
return x - f;
float f = floorf(x);
*i = (int)f;
return x - f;
}
__device float fade(float t)
@ -96,7 +96,7 @@ __device float fade(float t)
__device float nerp(float t, float a, float b)
{
return (1.0f - t) * a + t * b;
return (1.0f - t) * a + t * b;
}
__device float grad(int hash, float x, float y, float z)

@ -221,7 +221,7 @@ __device_noinline float noise_turbulence(float3 p, NodeNoiseBasis basis, float o
int i, n;
octaves = clamp(octaves, 0.0f, 16.0f);
n= (int)octaves;
n = (int)octaves;
for(i = 0; i <= n; i++) {
float t = noise_basis(fscale*p, basis);

@ -38,7 +38,7 @@ __device_noinline float4 svm_voronoi(NodeVoronoiColoring coloring, float scale,
}
else {
color = cellnoise_color(pa[0]);
fac= average(color);
fac = average(color);
}
return make_float4(color.x, color.y, color.z, fac);

@ -27,9 +27,9 @@ __device_noinline float svm_wave(NodeWaveType type, float3 p, float scale, float
p *= scale;
if(type == NODE_WAVE_BANDS)
n= (p.x + p.y + p.z)*10.0f;
n = (p.x + p.y + p.z) * 10.0f;
else /* if(type == NODE_WAVE_RINGS) */
n= len(p)*20.0f;
n = len(p) * 20.0f;
if(distortion != 0.0f)
n += distortion * noise_turbulence(p*dscale, NODE_NOISE_PERLIN, detail, 0);

@ -74,10 +74,13 @@ bool Attribute::same_storage(TypeDesc a, TypeDesc b)
if(a == TypeDesc::TypeColor || a == TypeDesc::TypePoint ||
a == TypeDesc::TypeVector || a == TypeDesc::TypeNormal)
{
if(b == TypeDesc::TypeColor || b == TypeDesc::TypePoint ||
b == TypeDesc::TypeVector || b == TypeDesc::TypeNormal)
{
return true;
}
}
return false;
}
@ -286,10 +289,13 @@ bool AttributeRequestSet::modified(const AttributeRequestSet& other)
for(size_t j = 0; j < requests.size() && !found; j++)
if(requests[i].name == other.requests[j].name &&
requests[i].std == other.requests[j].std)
{
found = true;
}
if(!found)
if(!found) {
return true;
}
}
return false;

@ -117,8 +117,8 @@ void RenderBuffers::reset(Device *device, BufferParams& params_)
uint *init_state = rng_state.resize(params.width, params.height);
int x, y, width = params.width, height = params.height;
for(x=0; x<width; x++)
for(y=0; y<height; y++)
for(x = 0; x < width; x++)
for(y = 0; y < height; y++)
init_state[x + y*width] = hash_int_2d(params.full_x+x, params.full_y+y);
device->mem_alloc(rng_state, MEM_READ_WRITE);

@ -199,7 +199,7 @@ void Camera::device_update(Device *device, DeviceScene *dscene, Scene *scene)
kcam->bladesrotation = bladesrotation;
/* motion blur */
kcam->shuttertime= (need_motion == Scene::MOTION_BLUR)? shuttertime: 0.0f;
kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime: 0.0f;
/* type */
kcam->type = type;

@ -78,7 +78,7 @@ public:
bool use_motion;
/* computed camera parameters */
Transform screentoworld;
Transform screentoworld;
Transform rastertoworld;
Transform ndctoworld;
Transform rastertocamera;

@ -73,17 +73,17 @@ static vector<float> filter_table(FilterType type, float width)
/* compute cumulative distribution function */
filter_table_cdf[0] = 0.0f;
for(i=0; i<filter_table_size; i++) {
for(i = 0; i < filter_table_size; i++) {
float x = i*width*0.5f/(filter_table_size-1);
float y = filter_func(x, width);
filter_table_cdf[i+1] += filter_table_cdf[i] + fabsf(y);
}
for(i=0; i<=filter_table_size; i++)
for(i = 0; i <= filter_table_size; i++)
filter_table_cdf[i] /= filter_table_cdf[filter_table_size];
/* create importance sampling table */
for(i=0; i<=half_size; i++) {
for(i = 0; i <= half_size; i++) {
float x = i/(float)half_size;
int index = upper_bound(filter_table_cdf.begin(), filter_table_cdf.end(), x) - filter_table_cdf.begin();
float t;

@ -44,7 +44,7 @@ public:
float3 min, max;
bool use_minmax;
enum Mapping { NONE=0, X=1, Y=2, Z=3 };
enum Mapping { NONE = 0, X = 1, Y = 2, Z = 3 };
Mapping x_mapping, y_mapping, z_mapping;
enum Projection { FLAT, CUBE, TUBE, SPHERE };

@ -56,225 +56,225 @@ typedef struct CUstream_st *CUstream;
typedef struct CUgraphicsResource_st *CUgraphicsResource;
typedef struct CUuuid_st {
char bytes[16];
char bytes[16];
} CUuuid;
typedef enum CUctx_flags_enum {
CU_CTX_SCHED_AUTO = 0,
CU_CTX_SCHED_SPIN = 1,
CU_CTX_SCHED_YIELD = 2,
CU_CTX_SCHED_MASK = 0x3,
CU_CTX_BLOCKING_SYNC = 4,
CU_CTX_MAP_HOST = 8,
CU_CTX_LMEM_RESIZE_TO_MAX = 16,
CU_CTX_FLAGS_MASK = 0x1f
CU_CTX_SCHED_AUTO = 0,
CU_CTX_SCHED_SPIN = 1,
CU_CTX_SCHED_YIELD = 2,
CU_CTX_SCHED_MASK = 0x3,
CU_CTX_BLOCKING_SYNC = 4,
CU_CTX_MAP_HOST = 8,
CU_CTX_LMEM_RESIZE_TO_MAX = 16,
CU_CTX_FLAGS_MASK = 0x1f
} CUctx_flags;
typedef enum CUevent_flags_enum {
CU_EVENT_DEFAULT = 0,
CU_EVENT_BLOCKING_SYNC = 1,
CU_EVENT_DISABLE_TIMING = 2
CU_EVENT_DEFAULT = 0,
CU_EVENT_BLOCKING_SYNC = 1,
CU_EVENT_DISABLE_TIMING = 2
} CUevent_flags;
typedef enum CUarray_format_enum {
CU_AD_FORMAT_UNSIGNED_INT8 = 0x01,
CU_AD_FORMAT_UNSIGNED_INT16 = 0x02,
CU_AD_FORMAT_UNSIGNED_INT32 = 0x03,
CU_AD_FORMAT_SIGNED_INT8 = 0x08,
CU_AD_FORMAT_SIGNED_INT16 = 0x09,
CU_AD_FORMAT_SIGNED_INT32 = 0x0a,
CU_AD_FORMAT_HALF = 0x10,
CU_AD_FORMAT_FLOAT = 0x20
CU_AD_FORMAT_UNSIGNED_INT8 = 0x01,
CU_AD_FORMAT_UNSIGNED_INT16 = 0x02,
CU_AD_FORMAT_UNSIGNED_INT32 = 0x03,
CU_AD_FORMAT_SIGNED_INT8 = 0x08,
CU_AD_FORMAT_SIGNED_INT16 = 0x09,
CU_AD_FORMAT_SIGNED_INT32 = 0x0a,
CU_AD_FORMAT_HALF = 0x10,
CU_AD_FORMAT_FLOAT = 0x20
} CUarray_format;
typedef enum CUaddress_mode_enum {
CU_TR_ADDRESS_MODE_WRAP = 0,
CU_TR_ADDRESS_MODE_CLAMP = 1,
CU_TR_ADDRESS_MODE_MIRROR = 2,
CU_TR_ADDRESS_MODE_BORDER = 3
CU_TR_ADDRESS_MODE_WRAP = 0,
CU_TR_ADDRESS_MODE_CLAMP = 1,
CU_TR_ADDRESS_MODE_MIRROR = 2,
CU_TR_ADDRESS_MODE_BORDER = 3
} CUaddress_mode;
typedef enum CUfilter_mode_enum {
CU_TR_FILTER_MODE_POINT = 0,
CU_TR_FILTER_MODE_LINEAR = 1
CU_TR_FILTER_MODE_POINT = 0,
CU_TR_FILTER_MODE_LINEAR = 1
} CUfilter_mode;
typedef enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7,
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK = 8,
CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8,
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9,
CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10,
CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11,
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK = 12,
CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12,
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13,
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14,
CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15,
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16,
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17,
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18,
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19,
CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH = 21,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH = 22,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT = 23,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH = 24,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT = 25,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH = 26,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH = 27,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT = 28,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES = 29,
CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT = 30,
CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS = 31,
CU_DEVICE_ATTRIBUTE_ECC_ENABLED = 32,
CU_DEVICE_ATTRIBUTE_PCI_BUS_ID = 33,
CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID = 34,
CU_DEVICE_ATTRIBUTE_TCC_DRIVER = 35
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6,
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7,
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK = 8,
CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8,
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9,
CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10,
CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11,
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK = 12,
CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12,
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13,
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14,
CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15,
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16,
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17,
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18,
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19,
CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH = 21,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH = 22,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT = 23,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH = 24,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT = 25,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH = 26,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH = 27,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT = 28,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES = 29,
CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT = 30,
CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS = 31,
CU_DEVICE_ATTRIBUTE_ECC_ENABLED = 32,
CU_DEVICE_ATTRIBUTE_PCI_BUS_ID = 33,
CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID = 34,
CU_DEVICE_ATTRIBUTE_TCC_DRIVER = 35
} CUdevice_attribute;
typedef struct CUdevprop_st {
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int sharedMemPerBlock;
int totalConstantMemory;
int SIMDWidth;
int memPitch;
int regsPerBlock;
int clockRate;
int textureAlign;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int sharedMemPerBlock;
int totalConstantMemory;
int SIMDWidth;
int memPitch;
int regsPerBlock;
int clockRate;
int textureAlign;
} CUdevprop;
typedef enum CUfunction_attribute_enum {
CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 0,
CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES = 1,
CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES = 2,
CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES = 3,
CU_FUNC_ATTRIBUTE_NUM_REGS = 4,
CU_FUNC_ATTRIBUTE_PTX_VERSION = 5,
CU_FUNC_ATTRIBUTE_BINARY_VERSION = 6,
CU_FUNC_ATTRIBUTE_MAX
CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 0,
CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES = 1,
CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES = 2,
CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES = 3,
CU_FUNC_ATTRIBUTE_NUM_REGS = 4,
CU_FUNC_ATTRIBUTE_PTX_VERSION = 5,
CU_FUNC_ATTRIBUTE_BINARY_VERSION = 6,
CU_FUNC_ATTRIBUTE_MAX
} CUfunction_attribute;
typedef enum CUfunc_cache_enum {
CU_FUNC_CACHE_PREFER_NONE = 0x00,
CU_FUNC_CACHE_PREFER_SHARED = 0x01,
CU_FUNC_CACHE_PREFER_L1 = 0x02
CU_FUNC_CACHE_PREFER_NONE = 0x00,
CU_FUNC_CACHE_PREFER_SHARED = 0x01,
CU_FUNC_CACHE_PREFER_L1 = 0x02
} CUfunc_cache;
typedef enum CUmemorytype_enum {
CU_MEMORYTYPE_HOST = 0x01,
CU_MEMORYTYPE_DEVICE = 0x02,
CU_MEMORYTYPE_ARRAY = 0x03
CU_MEMORYTYPE_HOST = 0x01,
CU_MEMORYTYPE_DEVICE = 0x02,
CU_MEMORYTYPE_ARRAY = 0x03
} CUmemorytype;
typedef enum CUcomputemode_enum {
CU_COMPUTEMODE_DEFAULT = 0,
CU_COMPUTEMODE_EXCLUSIVE = 1,
CU_COMPUTEMODE_PROHIBITED = 2
CU_COMPUTEMODE_DEFAULT = 0,
CU_COMPUTEMODE_EXCLUSIVE = 1,
CU_COMPUTEMODE_PROHIBITED = 2
} CUcomputemode;
typedef enum CUjit_option_enum
{
CU_JIT_MAX_REGISTERS = 0,
CU_JIT_THREADS_PER_BLOCK,
CU_JIT_WALL_TIME,
CU_JIT_INFO_LOG_BUFFER,
CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES,
CU_JIT_ERROR_LOG_BUFFER,
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES,
CU_JIT_OPTIMIZATION_LEVEL,
CU_JIT_TARGET_FROM_CUCONTEXT,
CU_JIT_TARGET,
CU_JIT_FALLBACK_STRATEGY
CU_JIT_MAX_REGISTERS = 0,
CU_JIT_THREADS_PER_BLOCK,
CU_JIT_WALL_TIME,
CU_JIT_INFO_LOG_BUFFER,
CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES,
CU_JIT_ERROR_LOG_BUFFER,
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES,
CU_JIT_OPTIMIZATION_LEVEL,
CU_JIT_TARGET_FROM_CUCONTEXT,
CU_JIT_TARGET,
CU_JIT_FALLBACK_STRATEGY
} CUjit_option;
typedef enum CUjit_target_enum
{
CU_TARGET_COMPUTE_10 = 0,
CU_TARGET_COMPUTE_11,
CU_TARGET_COMPUTE_12,
CU_TARGET_COMPUTE_13,
CU_TARGET_COMPUTE_20,
CU_TARGET_COMPUTE_21,
CU_TARGET_COMPUTE_30
CU_TARGET_COMPUTE_10 = 0,
CU_TARGET_COMPUTE_11,
CU_TARGET_COMPUTE_12,
CU_TARGET_COMPUTE_13,
CU_TARGET_COMPUTE_20,
CU_TARGET_COMPUTE_21,
CU_TARGET_COMPUTE_30
} CUjit_target;
typedef enum CUjit_fallback_enum
{
CU_PREFER_PTX = 0,
CU_PREFER_BINARY
CU_PREFER_PTX = 0,
CU_PREFER_BINARY
} CUjit_fallback;
typedef enum CUgraphicsRegisterFlags_enum {
CU_GRAPHICS_REGISTER_FLAGS_NONE = 0x00
CU_GRAPHICS_REGISTER_FLAGS_NONE = 0x00
} CUgraphicsRegisterFlags;
typedef enum CUgraphicsMapResourceFlags_enum {
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE = 0x00,
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY = 0x01,
CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD = 0x02
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE = 0x00,
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY = 0x01,
CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD = 0x02
} CUgraphicsMapResourceFlags;
typedef enum CUarray_cubemap_face_enum {
CU_CUBEMAP_FACE_POSITIVE_X = 0x00,
CU_CUBEMAP_FACE_NEGATIVE_X = 0x01,
CU_CUBEMAP_FACE_POSITIVE_Y = 0x02,
CU_CUBEMAP_FACE_NEGATIVE_Y = 0x03,
CU_CUBEMAP_FACE_POSITIVE_Z = 0x04,
CU_CUBEMAP_FACE_NEGATIVE_Z = 0x05
CU_CUBEMAP_FACE_POSITIVE_X = 0x00,
CU_CUBEMAP_FACE_NEGATIVE_X = 0x01,
CU_CUBEMAP_FACE_POSITIVE_Y = 0x02,
CU_CUBEMAP_FACE_NEGATIVE_Y = 0x03,
CU_CUBEMAP_FACE_POSITIVE_Z = 0x04,
CU_CUBEMAP_FACE_NEGATIVE_Z = 0x05
} CUarray_cubemap_face;
typedef enum CUlimit_enum {
CU_LIMIT_STACK_SIZE = 0x00,
CU_LIMIT_PRINTF_FIFO_SIZE = 0x01,
CU_LIMIT_MALLOC_HEAP_SIZE = 0x02
CU_LIMIT_STACK_SIZE = 0x00,
CU_LIMIT_PRINTF_FIFO_SIZE = 0x01,
CU_LIMIT_MALLOC_HEAP_SIZE = 0x02
} CUlimit;
typedef enum cudaError_enum {
CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_OUT_OF_MEMORY = 2,
CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_DEINITIALIZED = 4,
CUDA_ERROR_NO_DEVICE = 100,
CUDA_ERROR_INVALID_DEVICE = 101,
CUDA_ERROR_INVALID_IMAGE = 200,
CUDA_ERROR_INVALID_CONTEXT = 201,
CUDA_ERROR_CONTEXT_ALREADY_CURRENT = 202,
CUDA_ERROR_MAP_FAILED = 205,
CUDA_ERROR_UNMAP_FAILED = 206,
CUDA_ERROR_ARRAY_IS_MAPPED = 207,
CUDA_ERROR_ALREADY_MAPPED = 208,
CUDA_ERROR_NO_BINARY_FOR_GPU = 209,
CUDA_ERROR_ALREADY_ACQUIRED = 210,
CUDA_ERROR_NOT_MAPPED = 211,
CUDA_ERROR_NOT_MAPPED_AS_ARRAY = 212,
CUDA_ERROR_NOT_MAPPED_AS_POINTER = 213,
CUDA_ERROR_ECC_UNCORRECTABLE = 214,
CUDA_ERROR_UNSUPPORTED_LIMIT = 215,
CUDA_ERROR_INVALID_SOURCE = 300,
CUDA_ERROR_FILE_NOT_FOUND = 301,
CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND = 302,
CUDA_ERROR_SHARED_OBJECT_INIT_FAILED = 303,
CUDA_ERROR_OPERATING_SYSTEM = 304,
CUDA_ERROR_INVALID_HANDLE = 400,
CUDA_ERROR_NOT_FOUND = 500,
CUDA_ERROR_NOT_READY = 600,
CUDA_ERROR_LAUNCH_FAILED = 700,
CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES = 701,
CUDA_ERROR_LAUNCH_TIMEOUT = 702,
CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING = 703,
CUDA_ERROR_UNKNOWN = 999
CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_OUT_OF_MEMORY = 2,
CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_DEINITIALIZED = 4,
CUDA_ERROR_NO_DEVICE = 100,
CUDA_ERROR_INVALID_DEVICE = 101,
CUDA_ERROR_INVALID_IMAGE = 200,
CUDA_ERROR_INVALID_CONTEXT = 201,
CUDA_ERROR_CONTEXT_ALREADY_CURRENT = 202,
CUDA_ERROR_MAP_FAILED = 205,
CUDA_ERROR_UNMAP_FAILED = 206,
CUDA_ERROR_ARRAY_IS_MAPPED = 207,
CUDA_ERROR_ALREADY_MAPPED = 208,
CUDA_ERROR_NO_BINARY_FOR_GPU = 209,
CUDA_ERROR_ALREADY_ACQUIRED = 210,
CUDA_ERROR_NOT_MAPPED = 211,
CUDA_ERROR_NOT_MAPPED_AS_ARRAY = 212,
CUDA_ERROR_NOT_MAPPED_AS_POINTER = 213,
CUDA_ERROR_ECC_UNCORRECTABLE = 214,
CUDA_ERROR_UNSUPPORTED_LIMIT = 215,
CUDA_ERROR_INVALID_SOURCE = 300,
CUDA_ERROR_FILE_NOT_FOUND = 301,
CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND = 302,
CUDA_ERROR_SHARED_OBJECT_INIT_FAILED = 303,
CUDA_ERROR_OPERATING_SYSTEM = 304,
CUDA_ERROR_INVALID_HANDLE = 400,
CUDA_ERROR_NOT_FOUND = 500,
CUDA_ERROR_NOT_READY = 600,
CUDA_ERROR_LAUNCH_FAILED = 700,
CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES = 701,
CUDA_ERROR_LAUNCH_TIMEOUT = 702,
CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING = 703,
CUDA_ERROR_UNKNOWN = 999
} CUresult;
#define CU_MEMHOSTALLOC_PORTABLE 0x01
@ -282,76 +282,76 @@ typedef enum cudaError_enum {
#define CU_MEMHOSTALLOC_WRITECOMBINED 0x04
typedef struct CUDA_MEMCPY2D_st {
size_t srcXInBytes;
size_t srcY;
size_t srcXInBytes;
size_t srcY;
CUmemorytype srcMemoryType;
const void *srcHost;
CUdeviceptr srcDevice;
CUarray srcArray;
size_t srcPitch;
CUmemorytype srcMemoryType;
const void *srcHost;
CUdeviceptr srcDevice;
CUarray srcArray;
size_t srcPitch;
size_t dstXInBytes;
size_t dstY;
size_t dstXInBytes;
size_t dstY;
CUmemorytype dstMemoryType;
void *dstHost;
CUdeviceptr dstDevice;
CUarray dstArray;
size_t dstPitch;
CUmemorytype dstMemoryType;
void *dstHost;
CUdeviceptr dstDevice;
CUarray dstArray;
size_t dstPitch;
size_t WidthInBytes;
size_t Height;
size_t WidthInBytes;
size_t Height;
} CUDA_MEMCPY2D;
typedef struct CUDA_MEMCPY3D_st {
size_t srcXInBytes;
size_t srcY;
size_t srcZ;
size_t srcLOD;
CUmemorytype srcMemoryType;
const void *srcHost;
CUdeviceptr srcDevice;
CUarray srcArray;
void *reserved0;
size_t srcPitch;
size_t srcHeight;
size_t srcXInBytes;
size_t srcY;
size_t srcZ;
size_t srcLOD;
CUmemorytype srcMemoryType;
const void *srcHost;
CUdeviceptr srcDevice;
CUarray srcArray;
void *reserved0;
size_t srcPitch;
size_t srcHeight;
size_t dstXInBytes;
size_t dstY;
size_t dstZ;
size_t dstLOD;
CUmemorytype dstMemoryType;
void *dstHost;
CUdeviceptr dstDevice;
CUarray dstArray;
void *reserved1;
size_t dstPitch;
size_t dstHeight;
size_t dstXInBytes;
size_t dstY;
size_t dstZ;
size_t dstLOD;
CUmemorytype dstMemoryType;
void *dstHost;
CUdeviceptr dstDevice;
CUarray dstArray;
void *reserved1;
size_t dstPitch;
size_t dstHeight;
size_t WidthInBytes;
size_t Height;
size_t Depth;
size_t WidthInBytes;
size_t Height;
size_t Depth;
} CUDA_MEMCPY3D;
typedef struct CUDA_ARRAY_DESCRIPTOR_st
{
size_t Width;
size_t Height;
size_t Width;
size_t Height;
CUarray_format Format;
unsigned int NumChannels;
CUarray_format Format;
unsigned int NumChannels;
} CUDA_ARRAY_DESCRIPTOR;
typedef struct CUDA_ARRAY3D_DESCRIPTOR_st
{
size_t Width;
size_t Height;
size_t Depth;
size_t Width;
size_t Height;
size_t Depth;
CUarray_format Format;
unsigned int NumChannels;
unsigned int Flags;
CUarray_format Format;
unsigned int NumChannels;
unsigned int Flags;
} CUDA_ARRAY3D_DESCRIPTOR;
#define CUDA_ARRAY3D_2DARRAY 0x01

@ -34,14 +34,14 @@ static inline uint hash_int_2d(uint kx, uint ky)
b += ky;
c ^= b; c -= rot(b,14);
a ^= c; a -= rot(c,11);
b ^= a; b -= rot(a,25);
c ^= b; c -= rot(b,16);
a ^= c; a -= rot(c,4);
b ^= a; b -= rot(a,14);
c ^= b; c -= rot(b,24);
a ^= c; a -= rot(c,11);
b ^= a; b -= rot(a,25);
c ^= b; c -= rot(b,16);
a ^= c; a -= rot(c,4);
b ^= a; b -= rot(a,14);
c ^= b; c -= rot(b,24);
return c;
return c;
#undef rot
}

@ -365,7 +365,7 @@ string MD5Hash::get_hex()
finish(digest);
for(int i=0; i<16; i++)
for(int i = 0; i < 16; i++)
sprintf(buf + i*2, "%02X", digest[i]);
buf[sizeof(buf)-1] = '\0';

@ -44,13 +44,13 @@ public:
bool append_file(const string& filepath);
string get_hex();
protected:
protected:
void process(const uint8_t *data);
void finish(uint8_t digest[16]);
uint32_t count[2]; /* message length in bits, lsw first */
uint32_t abcd[4]; /* digest buffer */
uint8_t buf[64]; /* accumulate block */
uint32_t count[2]; /* message length in bits, lsw first */
uint32_t abcd[4]; /* digest buffer */
uint8_t buf[64]; /* accumulate block */
};
CCL_NAMESPACE_END

@ -13,29 +13,29 @@
#ifndef CLCC_GENERATE_DOCUMENTATION
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#include <windows.h>
# define WIN32_LEAN_AND_MEAN
# define VC_EXTRALEAN
# include <windows.h>
typedef HMODULE CLCC_DYNLIB_HANDLE;
typedef HMODULE CLCC_DYNLIB_HANDLE;
#define CLCC_DYNLIB_OPEN LoadLibrary
#define CLCC_DYNLIB_CLOSE FreeLibrary
#define CLCC_DYNLIB_IMPORT GetProcAddress
# define CLCC_DYNLIB_OPEN LoadLibrary
# define CLCC_DYNLIB_CLOSE FreeLibrary
# define CLCC_DYNLIB_IMPORT GetProcAddress
#else
#include <dlfcn.h>
# include <dlfcn.h>
typedef void* CLCC_DYNLIB_HANDLE;
typedef void* CLCC_DYNLIB_HANDLE;
#define CLCC_DYNLIB_OPEN(path) dlopen(path, RTLD_NOW | RTLD_GLOBAL)
#define CLCC_DYNLIB_CLOSE dlclose
#define CLCC_DYNLIB_IMPORT dlsym
# define CLCC_DYNLIB_OPEN(path) dlopen(path, RTLD_NOW | RTLD_GLOBAL)
# define CLCC_DYNLIB_CLOSE dlclose
# define CLCC_DYNLIB_IMPORT dlsym
#endif
#else
//typedef implementation_defined CLCC_DYNLIB_HANDLE;
//#define CLCC_DYNLIB_OPEN(path) implementation_defined
//#define CLCC_DYNLIB_CLOSE implementation_defined
//#define CLCC_DYNLIB_IMPORT implementation_defined
// typedef implementation_defined CLCC_DYNLIB_HANDLE;
//# define CLCC_DYNLIB_OPEN(path) implementation_defined
//# define CLCC_DYNLIB_CLOSE implementation_defined
//# define CLCC_DYNLIB_IMPORT implementation_defined
#endif
CCL_NAMESPACE_BEGIN
@ -117,12 +117,12 @@ PFNCLGETEXTENSIONFUNCTIONADDRESS __clewGetExtensionFunctionAddress = NULL;
//! \brief Unloads OpenCL dynamic library, should not be called directly
static void clewExit(void)
{
if (module != NULL)
{
// Ignore errors
CLCC_DYNLIB_CLOSE(module);
module = NULL;
}
if (module != NULL)
{
// Ignore errors
CLCC_DYNLIB_CLOSE(module);
module = NULL;
}
}
//! \param path path to dynamic library to load
@ -138,186 +138,186 @@ int clLibraryInit()
#else
const char *path = "libOpenCL.so";
#endif
int error = 0;
int error = 0;
// Check if already initialized
if (module != NULL)
{
return 1;
}
// Check if already initialized
if (module != NULL)
{
return 1;
}
// Load library
module = CLCC_DYNLIB_OPEN(path);
// Load library
module = CLCC_DYNLIB_OPEN(path);
// Check for errors
if (module == NULL)
{
return 0;
}
// Check for errors
if (module == NULL)
{
return 0;
}
// Set unloading
error = atexit(clewExit);
// Set unloading
error = atexit(clewExit);
if (error)
{
// Failure queing atexit, shutdown with error
CLCC_DYNLIB_CLOSE(module);
module = NULL;
if (error)
{
// Failure queing atexit, shutdown with error
CLCC_DYNLIB_CLOSE(module);
module = NULL;
return 0;
}
return 0;
}
// Determine function entry-points
__clewGetPlatformIDs = (PFNCLGETPLATFORMIDS )CLCC_DYNLIB_IMPORT(module, "clGetPlatformIDs");
__clewGetPlatformInfo = (PFNCLGETPLATFORMINFO )CLCC_DYNLIB_IMPORT(module, "clGetPlatformInfo");
__clewGetDeviceIDs = (PFNCLGETDEVICEIDS )CLCC_DYNLIB_IMPORT(module, "clGetDeviceIDs");
__clewGetDeviceInfo = (PFNCLGETDEVICEINFO )CLCC_DYNLIB_IMPORT(module, "clGetDeviceInfo");
__clewCreateContext = (PFNCLCREATECONTEXT )CLCC_DYNLIB_IMPORT(module, "clCreateContext");
__clewCreateContextFromType = (PFNCLCREATECONTEXTFROMTYPE )CLCC_DYNLIB_IMPORT(module, "clCreateContextFromType");
__clewRetainContext = (PFNCLRETAINCONTEXT )CLCC_DYNLIB_IMPORT(module, "clRetainContext");
__clewReleaseContext = (PFNCLRELEASECONTEXT )CLCC_DYNLIB_IMPORT(module, "clReleaseContext");
__clewGetContextInfo = (PFNCLGETCONTEXTINFO )CLCC_DYNLIB_IMPORT(module, "clGetContextInfo");
__clewCreateCommandQueue = (PFNCLCREATECOMMANDQUEUE )CLCC_DYNLIB_IMPORT(module, "clCreateCommandQueue");
__clewRetainCommandQueue = (PFNCLRETAINCOMMANDQUEUE )CLCC_DYNLIB_IMPORT(module, "clRetainCommandQueue");
__clewReleaseCommandQueue = (PFNCLRELEASECOMMANDQUEUE )CLCC_DYNLIB_IMPORT(module, "clReleaseCommandQueue");
__clewGetCommandQueueInfo = (PFNCLGETCOMMANDQUEUEINFO )CLCC_DYNLIB_IMPORT(module, "clGetCommandQueueInfo");
__clewSetCommandQueueProperty = (PFNCLSETCOMMANDQUEUEPROPERTY )CLCC_DYNLIB_IMPORT(module, "clSetCommandQueueProperty");
__clewCreateBuffer = (PFNCLCREATEBUFFER )CLCC_DYNLIB_IMPORT(module, "clCreateBuffer");
__clewCreateImage2D = (PFNCLCREATEIMAGE2D )CLCC_DYNLIB_IMPORT(module, "clCreateImage2D");
__clewCreateImage3D = (PFNCLCREATEIMAGE3D )CLCC_DYNLIB_IMPORT(module, "clCreateImage3D");
__clewRetainMemObject = (PFNCLRETAINMEMOBJECT )CLCC_DYNLIB_IMPORT(module, "clRetainMemObject");
__clewReleaseMemObject = (PFNCLRELEASEMEMOBJECT )CLCC_DYNLIB_IMPORT(module, "clReleaseMemObject");
__clewGetSupportedImageFormats = (PFNCLGETSUPPORTEDIMAGEFORMATS )CLCC_DYNLIB_IMPORT(module, "clGetSupportedImageFormats");
__clewGetMemObjectInfo = (PFNCLGETMEMOBJECTINFO )CLCC_DYNLIB_IMPORT(module, "clGetMemObjectInfo");
__clewGetImageInfo = (PFNCLGETIMAGEINFO )CLCC_DYNLIB_IMPORT(module, "clGetImageInfo");
__clewCreateSampler = (PFNCLCREATESAMPLER )CLCC_DYNLIB_IMPORT(module, "clCreateSampler");
__clewRetainSampler = (PFNCLRETAINSAMPLER )CLCC_DYNLIB_IMPORT(module, "clRetainSampler");
__clewReleaseSampler = (PFNCLRELEASESAMPLER )CLCC_DYNLIB_IMPORT(module, "clReleaseSampler");
__clewGetSamplerInfo = (PFNCLGETSAMPLERINFO )CLCC_DYNLIB_IMPORT(module, "clGetSamplerInfo");
__clewCreateProgramWithSource = (PFNCLCREATEPROGRAMWITHSOURCE )CLCC_DYNLIB_IMPORT(module, "clCreateProgramWithSource");
__clewCreateProgramWithBinary = (PFNCLCREATEPROGRAMWITHBINARY )CLCC_DYNLIB_IMPORT(module, "clCreateProgramWithBinary");
__clewRetainProgram = (PFNCLRETAINPROGRAM )CLCC_DYNLIB_IMPORT(module, "clRetainProgram");
__clewReleaseProgram = (PFNCLRELEASEPROGRAM )CLCC_DYNLIB_IMPORT(module, "clReleaseProgram");
__clewBuildProgram = (PFNCLBUILDPROGRAM )CLCC_DYNLIB_IMPORT(module, "clBuildProgram");
__clewUnloadCompiler = (PFNCLUNLOADCOMPILER )CLCC_DYNLIB_IMPORT(module, "clUnloadCompiler");
__clewGetProgramInfo = (PFNCLGETPROGRAMINFO )CLCC_DYNLIB_IMPORT(module, "clGetProgramInfo");
__clewGetProgramBuildInfo = (PFNCLGETPROGRAMBUILDINFO )CLCC_DYNLIB_IMPORT(module, "clGetProgramBuildInfo");
__clewCreateKernel = (PFNCLCREATEKERNEL )CLCC_DYNLIB_IMPORT(module, "clCreateKernel");
__clewCreateKernelsInProgram = (PFNCLCREATEKERNELSINPROGRAM )CLCC_DYNLIB_IMPORT(module, "clCreateKernelsInProgram");
__clewRetainKernel = (PFNCLRETAINKERNEL )CLCC_DYNLIB_IMPORT(module, "clRetainKernel");
__clewReleaseKernel = (PFNCLRELEASEKERNEL )CLCC_DYNLIB_IMPORT(module, "clReleaseKernel");
__clewSetKernelArg = (PFNCLSETKERNELARG )CLCC_DYNLIB_IMPORT(module, "clSetKernelArg");
__clewGetKernelInfo = (PFNCLGETKERNELINFO )CLCC_DYNLIB_IMPORT(module, "clGetKernelInfo");
__clewGetKernelWorkGroupInfo = (PFNCLGETKERNELWORKGROUPINFO )CLCC_DYNLIB_IMPORT(module, "clGetKernelWorkGroupInfo");
__clewWaitForEvents = (PFNCLWAITFOREVENTS )CLCC_DYNLIB_IMPORT(module, "clWaitForEvents");
__clewGetEventInfo = (PFNCLGETEVENTINFO )CLCC_DYNLIB_IMPORT(module, "clGetEventInfo");
__clewRetainEvent = (PFNCLRETAINEVENT )CLCC_DYNLIB_IMPORT(module, "clRetainEvent");
__clewReleaseEvent = (PFNCLRELEASEEVENT )CLCC_DYNLIB_IMPORT(module, "clReleaseEvent");
__clewGetEventProfilingInfo = (PFNCLGETEVENTPROFILINGINFO )CLCC_DYNLIB_IMPORT(module, "clGetEventProfilingInfo");
__clewFlush = (PFNCLFLUSH )CLCC_DYNLIB_IMPORT(module, "clFlush");
__clewFinish = (PFNCLFINISH )CLCC_DYNLIB_IMPORT(module, "clFinish");
__clewEnqueueReadBuffer = (PFNCLENQUEUEREADBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueReadBuffer");
__clewEnqueueWriteBuffer = (PFNCLENQUEUEWRITEBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueWriteBuffer");
__clewEnqueueCopyBuffer = (PFNCLENQUEUECOPYBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyBuffer");
__clewEnqueueReadImage = (PFNCLENQUEUEREADIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueReadImage");
__clewEnqueueWriteImage = (PFNCLENQUEUEWRITEIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueWriteImage");
__clewEnqueueCopyImage = (PFNCLENQUEUECOPYIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyImage");
__clewEnqueueCopyImageToBuffer = (PFNCLENQUEUECOPYIMAGETOBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyImageToBuffer");
__clewEnqueueCopyBufferToImage = (PFNCLENQUEUECOPYBUFFERTOIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyBufferToImage");
__clewEnqueueMapBuffer = (PFNCLENQUEUEMAPBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueMapBuffer");
__clewEnqueueMapImage = (PFNCLENQUEUEMAPIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueMapImage");
__clewEnqueueUnmapMemObject = (PFNCLENQUEUEUNMAPMEMOBJECT )CLCC_DYNLIB_IMPORT(module, "clEnqueueUnmapMemObject");
__clewEnqueueNDRangeKernel = (PFNCLENQUEUENDRANGEKERNEL )CLCC_DYNLIB_IMPORT(module, "clEnqueueNDRangeKernel");
__clewEnqueueTask = (PFNCLENQUEUETASK )CLCC_DYNLIB_IMPORT(module, "clEnqueueTask");
__clewEnqueueNativeKernel = (PFNCLENQUEUENATIVEKERNEL )CLCC_DYNLIB_IMPORT(module, "clEnqueueNativeKernel");
__clewEnqueueMarker = (PFNCLENQUEUEMARKER )CLCC_DYNLIB_IMPORT(module, "clEnqueueMarker");
__clewEnqueueWaitForEvents = (PFNCLENQUEUEWAITFOREVENTS )CLCC_DYNLIB_IMPORT(module, "clEnqueueWaitForEvents");
__clewEnqueueBarrier = (PFNCLENQUEUEBARRIER )CLCC_DYNLIB_IMPORT(module, "clEnqueueBarrier");
__clewGetExtensionFunctionAddress = (PFNCLGETEXTENSIONFUNCTIONADDRESS )CLCC_DYNLIB_IMPORT(module, "clGetExtensionFunctionAddress");
// Determine function entry-points
__clewGetPlatformIDs = (PFNCLGETPLATFORMIDS )CLCC_DYNLIB_IMPORT(module, "clGetPlatformIDs");
__clewGetPlatformInfo = (PFNCLGETPLATFORMINFO )CLCC_DYNLIB_IMPORT(module, "clGetPlatformInfo");
__clewGetDeviceIDs = (PFNCLGETDEVICEIDS )CLCC_DYNLIB_IMPORT(module, "clGetDeviceIDs");
__clewGetDeviceInfo = (PFNCLGETDEVICEINFO )CLCC_DYNLIB_IMPORT(module, "clGetDeviceInfo");
__clewCreateContext = (PFNCLCREATECONTEXT )CLCC_DYNLIB_IMPORT(module, "clCreateContext");
__clewCreateContextFromType = (PFNCLCREATECONTEXTFROMTYPE )CLCC_DYNLIB_IMPORT(module, "clCreateContextFromType");
__clewRetainContext = (PFNCLRETAINCONTEXT )CLCC_DYNLIB_IMPORT(module, "clRetainContext");
__clewReleaseContext = (PFNCLRELEASECONTEXT )CLCC_DYNLIB_IMPORT(module, "clReleaseContext");
__clewGetContextInfo = (PFNCLGETCONTEXTINFO )CLCC_DYNLIB_IMPORT(module, "clGetContextInfo");
__clewCreateCommandQueue = (PFNCLCREATECOMMANDQUEUE )CLCC_DYNLIB_IMPORT(module, "clCreateCommandQueue");
__clewRetainCommandQueue = (PFNCLRETAINCOMMANDQUEUE )CLCC_DYNLIB_IMPORT(module, "clRetainCommandQueue");
__clewReleaseCommandQueue = (PFNCLRELEASECOMMANDQUEUE )CLCC_DYNLIB_IMPORT(module, "clReleaseCommandQueue");
__clewGetCommandQueueInfo = (PFNCLGETCOMMANDQUEUEINFO )CLCC_DYNLIB_IMPORT(module, "clGetCommandQueueInfo");
__clewSetCommandQueueProperty = (PFNCLSETCOMMANDQUEUEPROPERTY )CLCC_DYNLIB_IMPORT(module, "clSetCommandQueueProperty");
__clewCreateBuffer = (PFNCLCREATEBUFFER )CLCC_DYNLIB_IMPORT(module, "clCreateBuffer");
__clewCreateImage2D = (PFNCLCREATEIMAGE2D )CLCC_DYNLIB_IMPORT(module, "clCreateImage2D");
__clewCreateImage3D = (PFNCLCREATEIMAGE3D )CLCC_DYNLIB_IMPORT(module, "clCreateImage3D");
__clewRetainMemObject = (PFNCLRETAINMEMOBJECT )CLCC_DYNLIB_IMPORT(module, "clRetainMemObject");
__clewReleaseMemObject = (PFNCLRELEASEMEMOBJECT )CLCC_DYNLIB_IMPORT(module, "clReleaseMemObject");
__clewGetSupportedImageFormats = (PFNCLGETSUPPORTEDIMAGEFORMATS )CLCC_DYNLIB_IMPORT(module, "clGetSupportedImageFormats");
__clewGetMemObjectInfo = (PFNCLGETMEMOBJECTINFO )CLCC_DYNLIB_IMPORT(module, "clGetMemObjectInfo");
__clewGetImageInfo = (PFNCLGETIMAGEINFO )CLCC_DYNLIB_IMPORT(module, "clGetImageInfo");
__clewCreateSampler = (PFNCLCREATESAMPLER )CLCC_DYNLIB_IMPORT(module, "clCreateSampler");
__clewRetainSampler = (PFNCLRETAINSAMPLER )CLCC_DYNLIB_IMPORT(module, "clRetainSampler");
__clewReleaseSampler = (PFNCLRELEASESAMPLER )CLCC_DYNLIB_IMPORT(module, "clReleaseSampler");
__clewGetSamplerInfo = (PFNCLGETSAMPLERINFO )CLCC_DYNLIB_IMPORT(module, "clGetSamplerInfo");
__clewCreateProgramWithSource = (PFNCLCREATEPROGRAMWITHSOURCE )CLCC_DYNLIB_IMPORT(module, "clCreateProgramWithSource");
__clewCreateProgramWithBinary = (PFNCLCREATEPROGRAMWITHBINARY )CLCC_DYNLIB_IMPORT(module, "clCreateProgramWithBinary");
__clewRetainProgram = (PFNCLRETAINPROGRAM )CLCC_DYNLIB_IMPORT(module, "clRetainProgram");
__clewReleaseProgram = (PFNCLRELEASEPROGRAM )CLCC_DYNLIB_IMPORT(module, "clReleaseProgram");
__clewBuildProgram = (PFNCLBUILDPROGRAM )CLCC_DYNLIB_IMPORT(module, "clBuildProgram");
__clewUnloadCompiler = (PFNCLUNLOADCOMPILER )CLCC_DYNLIB_IMPORT(module, "clUnloadCompiler");
__clewGetProgramInfo = (PFNCLGETPROGRAMINFO )CLCC_DYNLIB_IMPORT(module, "clGetProgramInfo");
__clewGetProgramBuildInfo = (PFNCLGETPROGRAMBUILDINFO )CLCC_DYNLIB_IMPORT(module, "clGetProgramBuildInfo");
__clewCreateKernel = (PFNCLCREATEKERNEL )CLCC_DYNLIB_IMPORT(module, "clCreateKernel");
__clewCreateKernelsInProgram = (PFNCLCREATEKERNELSINPROGRAM )CLCC_DYNLIB_IMPORT(module, "clCreateKernelsInProgram");
__clewRetainKernel = (PFNCLRETAINKERNEL )CLCC_DYNLIB_IMPORT(module, "clRetainKernel");
__clewReleaseKernel = (PFNCLRELEASEKERNEL )CLCC_DYNLIB_IMPORT(module, "clReleaseKernel");
__clewSetKernelArg = (PFNCLSETKERNELARG )CLCC_DYNLIB_IMPORT(module, "clSetKernelArg");
__clewGetKernelInfo = (PFNCLGETKERNELINFO )CLCC_DYNLIB_IMPORT(module, "clGetKernelInfo");
__clewGetKernelWorkGroupInfo = (PFNCLGETKERNELWORKGROUPINFO )CLCC_DYNLIB_IMPORT(module, "clGetKernelWorkGroupInfo");
__clewWaitForEvents = (PFNCLWAITFOREVENTS )CLCC_DYNLIB_IMPORT(module, "clWaitForEvents");
__clewGetEventInfo = (PFNCLGETEVENTINFO )CLCC_DYNLIB_IMPORT(module, "clGetEventInfo");
__clewRetainEvent = (PFNCLRETAINEVENT )CLCC_DYNLIB_IMPORT(module, "clRetainEvent");
__clewReleaseEvent = (PFNCLRELEASEEVENT )CLCC_DYNLIB_IMPORT(module, "clReleaseEvent");
__clewGetEventProfilingInfo = (PFNCLGETEVENTPROFILINGINFO )CLCC_DYNLIB_IMPORT(module, "clGetEventProfilingInfo");
__clewFlush = (PFNCLFLUSH )CLCC_DYNLIB_IMPORT(module, "clFlush");
__clewFinish = (PFNCLFINISH )CLCC_DYNLIB_IMPORT(module, "clFinish");
__clewEnqueueReadBuffer = (PFNCLENQUEUEREADBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueReadBuffer");
__clewEnqueueWriteBuffer = (PFNCLENQUEUEWRITEBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueWriteBuffer");
__clewEnqueueCopyBuffer = (PFNCLENQUEUECOPYBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyBuffer");
__clewEnqueueReadImage = (PFNCLENQUEUEREADIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueReadImage");
__clewEnqueueWriteImage = (PFNCLENQUEUEWRITEIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueWriteImage");
__clewEnqueueCopyImage = (PFNCLENQUEUECOPYIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyImage");
__clewEnqueueCopyImageToBuffer = (PFNCLENQUEUECOPYIMAGETOBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyImageToBuffer");
__clewEnqueueCopyBufferToImage = (PFNCLENQUEUECOPYBUFFERTOIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueCopyBufferToImage");
__clewEnqueueMapBuffer = (PFNCLENQUEUEMAPBUFFER )CLCC_DYNLIB_IMPORT(module, "clEnqueueMapBuffer");
__clewEnqueueMapImage = (PFNCLENQUEUEMAPIMAGE )CLCC_DYNLIB_IMPORT(module, "clEnqueueMapImage");
__clewEnqueueUnmapMemObject = (PFNCLENQUEUEUNMAPMEMOBJECT )CLCC_DYNLIB_IMPORT(module, "clEnqueueUnmapMemObject");
__clewEnqueueNDRangeKernel = (PFNCLENQUEUENDRANGEKERNEL )CLCC_DYNLIB_IMPORT(module, "clEnqueueNDRangeKernel");
__clewEnqueueTask = (PFNCLENQUEUETASK )CLCC_DYNLIB_IMPORT(module, "clEnqueueTask");
__clewEnqueueNativeKernel = (PFNCLENQUEUENATIVEKERNEL )CLCC_DYNLIB_IMPORT(module, "clEnqueueNativeKernel");
__clewEnqueueMarker = (PFNCLENQUEUEMARKER )CLCC_DYNLIB_IMPORT(module, "clEnqueueMarker");
__clewEnqueueWaitForEvents = (PFNCLENQUEUEWAITFOREVENTS )CLCC_DYNLIB_IMPORT(module, "clEnqueueWaitForEvents");
__clewEnqueueBarrier = (PFNCLENQUEUEBARRIER )CLCC_DYNLIB_IMPORT(module, "clEnqueueBarrier");
__clewGetExtensionFunctionAddress = (PFNCLGETEXTENSIONFUNCTIONADDRESS )CLCC_DYNLIB_IMPORT(module, "clGetExtensionFunctionAddress");
if(__clewGetPlatformIDs == NULL)
return 0;
return 1;
return 1;
}
//! \param error CL error code
//! \return a string representation of the error code
const char *clErrorString(cl_int error)
{
static const char* strings[] =
{
// Error Codes
"CL_SUCCESS" // 0
, "CL_DEVICE_NOT_FOUND" // -1
, "CL_DEVICE_NOT_AVAILABLE" // -2
, "CL_COMPILER_NOT_AVAILABLE" // -3
, "CL_MEM_OBJECT_ALLOCATION_FAILURE" // -4
, "CL_OUT_OF_RESOURCES" // -5
, "CL_OUT_OF_HOST_MEMORY" // -6
, "CL_PROFILING_INFO_NOT_AVAILABLE" // -7
, "CL_MEM_COPY_OVERLAP" // -8
, "CL_IMAGE_FORMAT_MISMATCH" // -9
, "CL_IMAGE_FORMAT_NOT_SUPPORTED" // -10
, "CL_BUILD_PROGRAM_FAILURE" // -11
, "CL_MAP_FAILURE" // -12
static const char* strings[] =
{
// Error Codes
"CL_SUCCESS" // 0
, "CL_DEVICE_NOT_FOUND" // -1
, "CL_DEVICE_NOT_AVAILABLE" // -2
, "CL_COMPILER_NOT_AVAILABLE" // -3
, "CL_MEM_OBJECT_ALLOCATION_FAILURE" // -4
, "CL_OUT_OF_RESOURCES" // -5
, "CL_OUT_OF_HOST_MEMORY" // -6
, "CL_PROFILING_INFO_NOT_AVAILABLE" // -7
, "CL_MEM_COPY_OVERLAP" // -8
, "CL_IMAGE_FORMAT_MISMATCH" // -9
, "CL_IMAGE_FORMAT_NOT_SUPPORTED" // -10
, "CL_BUILD_PROGRAM_FAILURE" // -11
, "CL_MAP_FAILURE" // -12
, "" // -13
, "" // -14
, "" // -15
, "" // -16
, "" // -17
, "" // -18
, "" // -19
, "" // -13
, "" // -14
, "" // -15
, "" // -16
, "" // -17
, "" // -18
, "" // -19
, "" // -20
, "" // -21
, "" // -22
, "" // -23
, "" // -24
, "" // -25
, "" // -26
, "" // -27
, "" // -28
, "" // -29
, "" // -20
, "" // -21
, "" // -22
, "" // -23
, "" // -24
, "" // -25
, "" // -26
, "" // -27
, "" // -28
, "" // -29
, "CL_INVALID_VALUE" // -30
, "CL_INVALID_DEVICE_TYPE" // -31
, "CL_INVALID_PLATFORM" // -32
, "CL_INVALID_DEVICE" // -33
, "CL_INVALID_CONTEXT" // -34
, "CL_INVALID_QUEUE_PROPERTIES" // -35
, "CL_INVALID_COMMAND_QUEUE" // -36
, "CL_INVALID_HOST_PTR" // -37
, "CL_INVALID_MEM_OBJECT" // -38
, "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR" // -39
, "CL_INVALID_IMAGE_SIZE" // -40
, "CL_INVALID_SAMPLER" // -41
, "CL_INVALID_BINARY" // -42
, "CL_INVALID_BUILD_OPTIONS" // -43
, "CL_INVALID_PROGRAM" // -44
, "CL_INVALID_PROGRAM_EXECUTABLE" // -45
, "CL_INVALID_KERNEL_NAME" // -46
, "CL_INVALID_KERNEL_DEFINITION" // -47
, "CL_INVALID_KERNEL" // -48
, "CL_INVALID_ARG_INDEX" // -49
, "CL_INVALID_ARG_VALUE" // -50
, "CL_INVALID_ARG_SIZE" // -51
, "CL_INVALID_KERNEL_ARGS" // -52
, "CL_INVALID_WORK_DIMENSION" // -53
, "CL_INVALID_WORK_GROUP_SIZE" // -54
, "CL_INVALID_WORK_ITEM_SIZE" // -55
, "CL_INVALID_GLOBAL_OFFSET" // -56
, "CL_INVALID_EVENT_WAIT_LIST" // -57
, "CL_INVALID_EVENT" // -58
, "CL_INVALID_OPERATION" // -59
, "CL_INVALID_GL_OBJECT" // -60
, "CL_INVALID_BUFFER_SIZE" // -61
, "CL_INVALID_MIP_LEVEL" // -62
, "CL_INVALID_GLOBAL_WORK_SIZE" // -63
};
, "CL_INVALID_VALUE" // -30
, "CL_INVALID_DEVICE_TYPE" // -31
, "CL_INVALID_PLATFORM" // -32
, "CL_INVALID_DEVICE" // -33
, "CL_INVALID_CONTEXT" // -34
, "CL_INVALID_QUEUE_PROPERTIES" // -35
, "CL_INVALID_COMMAND_QUEUE" // -36
, "CL_INVALID_HOST_PTR" // -37
, "CL_INVALID_MEM_OBJECT" // -38
, "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR" // -39
, "CL_INVALID_IMAGE_SIZE" // -40
, "CL_INVALID_SAMPLER" // -41
, "CL_INVALID_BINARY" // -42
, "CL_INVALID_BUILD_OPTIONS" // -43
, "CL_INVALID_PROGRAM" // -44
, "CL_INVALID_PROGRAM_EXECUTABLE" // -45
, "CL_INVALID_KERNEL_NAME" // -46
, "CL_INVALID_KERNEL_DEFINITION" // -47
, "CL_INVALID_KERNEL" // -48
, "CL_INVALID_ARG_INDEX" // -49
, "CL_INVALID_ARG_VALUE" // -50
, "CL_INVALID_ARG_SIZE" // -51
, "CL_INVALID_KERNEL_ARGS" // -52
, "CL_INVALID_WORK_DIMENSION" // -53
, "CL_INVALID_WORK_GROUP_SIZE" // -54
, "CL_INVALID_WORK_ITEM_SIZE" // -55
, "CL_INVALID_GLOBAL_OFFSET" // -56
, "CL_INVALID_EVENT_WAIT_LIST" // -57
, "CL_INVALID_EVENT" // -58
, "CL_INVALID_OPERATION" // -59
, "CL_INVALID_GL_OBJECT" // -60
, "CL_INVALID_BUFFER_SIZE" // -61
, "CL_INVALID_MIP_LEVEL" // -62
, "CL_INVALID_GLOBAL_WORK_SIZE" // -63
};
return strings[-error];
return strings[-error];
}
CCL_NAMESPACE_END

@ -339,8 +339,8 @@ typedef cl_uint cl_command_type;
typedef cl_uint cl_profiling_info;
typedef struct _cl_image_format {
cl_channel_order image_channel_order;
cl_channel_type image_channel_data_type;
cl_channel_order image_channel_order;
cl_channel_type image_channel_data_type;
} cl_image_format;

@ -55,7 +55,7 @@ static void view_display_text(int x, int y, const char *text)
glRasterPos3f(x, y, 0);
for(c=text; *c != '\0'; c++)
for(c = text; *c != '\0'; c++)
glutBitmapCharacter(GLUT_BITMAP_HELVETICA_10, *c);
}