mathutils module methods only contained matrix constructors, move these to matrix class methods since this is acceptable in python. eg: dict.fromkeys() and groups them more logically.

mathutils.RotationMatrix -> mathutils.Matrix.Rotation
 mathutils.ScaleMatrix -> mathutils.Matrix.Scale
 mathutils.ShearMatrix -> mathutils.Matrix.Shear
 mathutils.TranslationMatrix -> mathutils.Matrix.Translation
 mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
This commit is contained in:
Campbell Barton 2010-08-11 16:40:36 +00:00
parent ab8ccaa709
commit 556b615cf8
12 changed files with 478 additions and 464 deletions

@ -55,7 +55,7 @@ import math # math.pi
import shutil # for file copying
import bpy
from mathutils import Vector, Euler, Matrix, RotationMatrix
from mathutils import Vector, Euler, Matrix
def copy_file(source, dest):
# XXX - remove, can use shutil
@ -107,19 +107,19 @@ def eulerRadToDeg(eul):
mtx4_identity = Matrix()
# testing
mtx_x90 = RotationMatrix( math.pi/2, 3, 'X') # used
#mtx_x90n = RotationMatrix(-90, 3, 'x')
#mtx_y90 = RotationMatrix( 90, 3, 'y')
#mtx_y90n = RotationMatrix(-90, 3, 'y')
#mtx_z90 = RotationMatrix( 90, 3, 'z')
#mtx_z90n = RotationMatrix(-90, 3, 'z')
mtx_x90 = Matrix.Rotation( math.pi/2, 3, 'X') # used
#mtx_x90n = Matrix.Rotation(-90, 3, 'x')
#mtx_y90 = Matrix.Rotation( 90, 3, 'y')
#mtx_y90n = Matrix.Rotation(-90, 3, 'y')
#mtx_z90 = Matrix.Rotation( 90, 3, 'z')
#mtx_z90n = Matrix.Rotation(-90, 3, 'z')
#mtx4_x90 = RotationMatrix( 90, 4, 'x')
mtx4_x90n = RotationMatrix(-math.pi/2, 4, 'X') # used
#mtx4_y90 = RotationMatrix( 90, 4, 'y')
mtx4_y90n = RotationMatrix(-math.pi/2, 4, 'Y') # used
mtx4_z90 = RotationMatrix( math.pi/2, 4, 'Z') # used
mtx4_z90n = RotationMatrix(-math.pi/2, 4, 'Z') # used
#mtx4_x90 = Matrix.Rotation( 90, 4, 'x')
mtx4_x90n = Matrix.Rotation(-math.pi/2, 4, 'X') # used
#mtx4_y90 = Matrix.Rotation( 90, 4, 'y')
mtx4_y90n = Matrix.Rotation(-math.pi/2, 4, 'Y') # used
mtx4_z90 = Matrix.Rotation( math.pi/2, 4, 'Z') # used
mtx4_z90n = Matrix.Rotation(-math.pi/2, 4, 'Z') # used
# def strip_path(p):
# return p.split('\\')[-1].split('/')[-1]
@ -562,7 +562,7 @@ def write(filename, batch_objects = None, \
elif type =='CAMERA':
# elif ob and type =='Camera':
y = matrix_rot * Vector((0.0, 1.0, 0.0))
matrix_rot = RotationMatrix(math.pi/2, 3, y) * matrix_rot
matrix_rot = Matrix.Rotation(math.pi/2, 3, y) * matrix_rot
return matrix_rot
@ -664,7 +664,7 @@ def write(filename, batch_objects = None, \
rot = tuple(matrix_rot.to_euler())
elif ob and ob.type =='Camera':
y = matrix_rot * Vector((0.0, 1.0, 0.0))
matrix_rot = RotationMatrix(math.pi/2, 3, y) * matrix_rot
matrix_rot = Matrix.Rotation(math.pi/2, 3, y) * matrix_rot
rot = tuple(matrix_rot.to_euler())
else:
rot = tuple(matrix_rot.to_euler())

@ -363,7 +363,7 @@ def write_file(filepath, objects, scene,
file.write('mtllib %s\n' % ( mtlfilepath.split('\\')[-1].split('/')[-1] ))
if EXPORT_ROTX90:
mat_xrot90= mathutils.RotationMatrix(-math.pi/2, 4, 'X')
mat_xrot90= mathutils.Matrix.Rotation(-math.pi/2, 4, 'X')
# Initialize totals, these are updated each object
totverts = totuvco = totno = 1

@ -81,7 +81,7 @@ from export_3ds import create_derived_objects, free_derived_objects
#
DEG2RAD=0.017453292519943295
MATWORLD= mathutils.RotationMatrix(-90, 4, 'X')
MATWORLD= mathutils.Matrix.Rotation(-90, 4, 'X')
####################################
# Global Variables

@ -23,7 +23,7 @@ from math import radians
import bpy
import mathutils
from mathutils import Vector, Euler, Matrix, RotationMatrix, TranslationMatrix
from mathutils import Vector, Euler, Matrix
class bvh_node_class(object):
@ -78,7 +78,7 @@ MATRIX_IDENTITY_4x4 = Matrix([1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0,
def eulerRotate(x, y, z, rot_order):
# Clamp all values between 0 and 360, values outside this raise an error.
mats = [RotationMatrix(x, 3, 'X'), RotationMatrix(y, 3, 'Y'), RotationMatrix(z, 3, 'Z')]
mats = [Matrix.Rotation(x, 3, 'X'), Matrix.Rotation(y, 3, 'Y'), Matrix.Rotation(z, 3, 'Z')]
return (MATRIX_IDENTITY_3x3 * mats[rot_order[0]] * (mats[rot_order[1]] * (mats[rot_order[2]]))).to_euler()
# Should work but doesnt!
@ -529,7 +529,7 @@ def bvh_node_dict2armature(context, bvh_nodes, ROT_MODE='XYZ', IMPORT_START_FRAM
prev_euler[i] = euler
if bvh_node.has_loc:
pose_bone.location = (bone_rest_matrix_inv * TranslationMatrix(Vector((lx, ly, lz)) - bvh_node.rest_head_local)).translation_part()
pose_bone.location = (bone_rest_matrix_inv * Matrix.Translation(Vector((lx, ly, lz)) - bvh_node.rest_head_local)).translation_part()
if bvh_node.has_loc:
pose_bone.keyframe_insert("location")

@ -771,7 +771,7 @@ def process_next_chunk(file, previous_chunk, importedObjects, IMAGE_SEARCH):
#print contextMatrix_rot
contextMatrix_rot.invert()
#print contextMatrix_rot
#contextMatrix_tx = Blender.mathutils.TranslationMatrix(0.5 * Blender.mathutils.Vector(data[9:]))
#contextMatrix_tx = mathutils.Matrix.Translation(0.5 * Blender.mathutils.Vector(data[9:]))
#contextMatrix_tx.invert()
#tx.invert()

@ -25,11 +25,11 @@ import mathutils
def add_object_align_init(context, operator):
if operator and operator.properties.is_property_set("location") and operator.properties.is_property_set("rotation"):
location = mathutils.TranslationMatrix(mathutils.Vector(operator.properties.location))
location = mathutils.Matrix.Translation(mathutils.Vector(operator.properties.location))
rotation = mathutils.Euler(operator.properties.rotation).to_matrix().resize4x4()
else:
# TODO, local view cursor!
location = mathutils.TranslationMatrix(context.scene.cursor_location)
location = mathutils.Matrix.Translation(context.scene.cursor_location)
if context.user_preferences.edit.object_align == 'VIEW' and context.space_data.type == 'VIEW_3D':
rotation = context.space_data.region_3d.view_matrix.rotation_part().invert().resize4x4()

@ -147,7 +147,7 @@ def deform(obj, definitions, base_names, options):
def main(obj, bone_definition, base_names, options):
from mathutils import Vector, RotationMatrix
from mathutils import Vector, Matrix
from math import radians, pi
arm = obj.data
@ -264,7 +264,7 @@ def main(obj, bone_definition, base_names, options):
# Rotate the rev chain 180 about the by the first bones center point
pivot = (rv_chain.spine_01_e.head + rv_chain.spine_01_e.tail) * 0.5
matrix = RotationMatrix(radians(180), 3, 'X')
matrix = Matrix.Rotation(radians(180), 3, 'X')
for i, attr in enumerate(rv_chain.attr_names): # similar to neck
spine_e = getattr(rv_chain, attr + "_e")
# use the first bone as the pivot

@ -22,7 +22,7 @@ import bpy
from rigify import RigifyError
from rigify_utils import bone_class_instance, copy_bone_simple
from rna_prop_ui import rna_idprop_ui_prop_get
from mathutils import Vector, RotationMatrix
from mathutils import Vector, Matrix
from math import radians, pi
# not used, defined for completeness

@ -22,7 +22,7 @@
# <pep8 compliant>
from mathutils import Matrix, Vector, RotationMatrix
from mathutils import Matrix, Vector
import time
import geometry
import bpy
@ -275,15 +275,15 @@ def testNewVecLs2DRotIsBetter(vecs, mat=-1, bestAreaSoFar = -1):
# Takes a list of faces that make up a UV island and rotate
# until they optimally fit inside a square.
ROTMAT_2D_POS_90D = RotationMatrix( radians(90.0), 2)
ROTMAT_2D_POS_45D = RotationMatrix( radians(45.0), 2)
ROTMAT_2D_POS_90D = Matrix.Rotation( radians(90.0), 2)
ROTMAT_2D_POS_45D = Matrix.Rotation( radians(45.0), 2)
RotMatStepRotation = []
rot_angle = 22.5 #45.0/2
while rot_angle > 0.1:
RotMatStepRotation.append([\
RotationMatrix( radians(rot_angle), 2),\
RotationMatrix( radians(-rot_angle), 2)])
Matrix.Rotation( radians(rot_angle), 2),\
Matrix.Rotation( radians(-rot_angle), 2)])
rot_angle = rot_angle/2.0

@ -6,7 +6,7 @@
# for keyboard event comparison
# import GameKeys
# support for Vector(), Matrix() types and advanced functions like ScaleMatrix(...) and RotationMatrix(...)
# support for Vector(), Matrix() types and advanced functions like Matrix.Scale(...) and Matrix.Rotation(...)
# import mathutils
# for functions like getWindowWidth(), getWindowHeight()

@ -46,6 +46,13 @@
* - Vector.toTrackQuat --> Vector.to_track_quat
* - Quaternion * Quaternion --> cross product (not dot product)
*
* moved into class functions.
* - Mathutils.RotationMatrix -> mathutils.Matrix.Rotation
* - Mathutils.ScaleMatrix -> mathutils.Matrix.Scale
* - Mathutils.ShearMatrix -> mathutils.Matrix.Shear
* - Mathutils.TranslationMatrix -> mathutils.Matrix.Translation
* - Mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
*
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
*/
@ -94,434 +101,7 @@ int mathutils_array_parse(float *array, int array_min, int array_max, PyObject *
}
//----------------------------------MATRIX FUNCTIONS--------------------
//----------------------------------mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_RotationMatrix_doc[] =
".. function:: RotationMatrix(angle, size, axis)\n"
"\n"
" Create a matrix representing a rotation.\n"
"\n"
" :arg angle: The angle of rotation desired, in radians.\n"
" :type angle: float\n"
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
" :type axis: string or :class:`Vector`\n"
" :return: A new rotation matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec= NULL;
char *axis= NULL;
int matSize;
float angle = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
return NULL;
}
if(vec && !VectorObject_Check(vec)) {
axis= _PyUnicode_AsString((PyObject *)vec);
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
return NULL;
}
else {
/* use the string */
vec= NULL;
}
}
while (angle<-(Py_PI*2))
angle+=(Py_PI*2);
while (angle>(Py_PI*2))
angle-=(Py_PI*2);
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(matSize == 2 && (vec != NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
return NULL;
}
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
return NULL;
}
if(vec) {
if(vec->size != 3) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
/* check for valid vector/axis above */
if(vec) {
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
}
else if(matSize == 2) {
//2D rotation matrix
mat[0] = (float) cos (angle);
mat[1] = (float) sin (angle);
mat[2] = -((float) sin(angle));
mat[3] = (float) cos(angle);
} else if(strcmp(axis, "X") == 0) {
//rotation around X
mat[0] = 1.0f;
mat[4] = (float) cos(angle);
mat[5] = (float) sin(angle);
mat[7] = -((float) sin(angle));
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Y") == 0) {
//rotation around Y
mat[0] = (float) cos(angle);
mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
mat[6] = (float) sin(angle);
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Z") == 0) {
//rotation around Z
mat[0] = (float) cos(angle);
mat[1] = (float) sin(angle);
mat[3] = -((float) sin(angle));
mat[4] = (float) cos(angle);
mat[8] = 1.0f;
}
else {
/* should never get here */
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
static char M_Mathutils_TranslationMatrix_doc[] =
".. function:: TranslationMatrix(vector)\n"
"\n"
" Create a matrix representing a translation.\n"
"\n"
" :arg vector: The translation vector.\n"
" :type vector: :class:`Vector`\n"
" :return: An identity matrix with a translation.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!VectorObject_Check(vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
return NULL;
}
if(vec->size != 3 && vec->size != 4) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
//create a identity matrix and add translation
unit_m4((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
}
//----------------------------------mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_ScaleMatrix_doc[] =
".. function:: ScaleMatrix(factor, size, axis)\n"
"\n"
" Create a matrix representing a scaling.\n"
"\n"
" :arg factor: The factor of scaling to apply.\n"
" :type factor: float\n"
" :arg size: The size of the scale matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Direction to influence scale. (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new scale matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
float norm = 0.0f, factor;
int matSize, x;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //scaling along axis
if(matSize == 2) {
mat[0] = factor;
mat[3] = factor;
} else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
} else { //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(matSize == 2) {
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
//----------------------------------mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_OrthoProjectionMatrix_doc[] =
".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
"\n"
" Create a matrix to represent an orthographic projection.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
" :type plane: string\n"
" :arg size: The size of the projection matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new projection matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
char *plane;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //ortho projection onto cardinal plane
if((strcmp(plane, "X") == 0) && matSize == 2) {
mat[0] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
return NULL;
}
} else { //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if((strcmp(plane, "R") == 0) && matSize == 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[2]);
mat[3] = -(vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = -(vec->vec[1] * vec->vec[2]);
mat[6] = -(vec->vec[0] * vec->vec[2]);
mat[7] = -(vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
return NULL;
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
static char M_Mathutils_ShearMatrix_doc[] =
".. function:: ShearMatrix(plane, factor, size)\n"
"\n"
" Create a matrix to represent an shear transformation.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
" :type plane: string\n"
" :arg factor: The factor of shear to apply.\n"
" :type factor: float\n"
" :arg size: The size of the shear matrix to construct [2, 4].\n"
" :type size: int\n"
" :return: A new shear matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
{
int matSize;
char *plane;
float factor;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if((strcmp(plane, "X") == 0)
&& matSize == 2) {
mat[0] = 1.0f;
mat[2] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[6] = factor;
mat[7] = factor;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
/* Utility functions */
@ -647,11 +227,6 @@ void BaseMathObject_dealloc(BaseMathObject * self)
/*----------------------------MODULE INIT-------------------------*/
struct PyMethodDef M_Mathutils_methods[] = {
{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
{NULL, NULL, 0, NULL}
};

@ -181,6 +181,438 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
}
/*-----------------------CLASS-METHODS----------------------------*/
//----------------------------------mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_Rotation_doc[] =
".. classmethod:: Rotation(angle, size, axis)\n"
"\n"
" Create a matrix representing a rotation.\n"
"\n"
" :arg angle: The angle of rotation desired, in radians.\n"
" :type angle: float\n"
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
" :type axis: string or :class:`Vector`\n"
" :return: A new rotation matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
{
VectorObject *vec= NULL;
char *axis= NULL;
int matSize;
float angle = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
return NULL;
}
if(vec && !VectorObject_Check(vec)) {
axis= _PyUnicode_AsString((PyObject *)vec);
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
return NULL;
}
else {
/* use the string */
vec= NULL;
}
}
while (angle<-(Py_PI*2))
angle+=(Py_PI*2);
while (angle>(Py_PI*2))
angle-=(Py_PI*2);
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(matSize == 2 && (vec != NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
return NULL;
}
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
return NULL;
}
if(vec) {
if(vec->size != 3) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
/* check for valid vector/axis above */
if(vec) {
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
}
else if(matSize == 2) {
//2D rotation matrix
mat[0] = (float) cos (angle);
mat[1] = (float) sin (angle);
mat[2] = -((float) sin(angle));
mat[3] = (float) cos(angle);
} else if(strcmp(axis, "X") == 0) {
//rotation around X
mat[0] = 1.0f;
mat[4] = (float) cos(angle);
mat[5] = (float) sin(angle);
mat[7] = -((float) sin(angle));
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Y") == 0) {
//rotation around Y
mat[0] = (float) cos(angle);
mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
mat[6] = (float) sin(angle);
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Z") == 0) {
//rotation around Z
mat[0] = (float) cos(angle);
mat[1] = (float) sin(angle);
mat[3] = -((float) sin(angle));
mat[4] = (float) cos(angle);
mat[8] = 1.0f;
}
else {
/* should never get here */
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
static char C_Matrix_Translation_doc[] =
".. classmethod:: Translation(vector)\n"
"\n"
" Create a matrix representing a translation.\n"
"\n"
" :arg vector: The translation vector.\n"
" :type vector: :class:`Vector`\n"
" :return: An identity matrix with a translation.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Translation(PyObject *cls, VectorObject * vec)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!VectorObject_Check(vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
return NULL;
}
if(vec->size != 3 && vec->size != 4) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
//create a identity matrix and add translation
unit_m4((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_Scale_doc[] =
".. classmethod:: Scale(factor, size, axis)\n"
"\n"
" Create a matrix representing a scaling.\n"
"\n"
" :arg factor: The factor of scaling to apply.\n"
" :type factor: float\n"
" :arg size: The size of the scale matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Direction to influence scale. (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new scale matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
{
VectorObject *vec = NULL;
float norm = 0.0f, factor;
int matSize, x;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //scaling along axis
if(matSize == 2) {
mat[0] = factor;
mat[3] = factor;
} else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
} else { //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(matSize == 2) {
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_OrthoProjection_doc[] =
".. classmethod:: OrthoProjection(plane, size, axis)\n"
"\n"
" Create a matrix to represent an orthographic projection.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
" :type plane: string\n"
" :arg size: The size of the projection matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new projection matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
{
VectorObject *vec = NULL;
char *plane;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //ortho projection onto cardinal plane
if((strcmp(plane, "X") == 0) && matSize == 2) {
mat[0] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
return NULL;
}
} else { //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if((strcmp(plane, "R") == 0) && matSize == 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[2]);
mat[3] = -(vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = -(vec->vec[1] * vec->vec[2]);
mat[6] = -(vec->vec[0] * vec->vec[2]);
mat[7] = -(vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
return NULL;
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
static char C_Matrix_Shear_doc[] =
".. classmethod:: Shear(plane, factor, size)\n"
"\n"
" Create a matrix to represent an shear transformation.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
" :type plane: string\n"
" :arg factor: The factor of shear to apply.\n"
" :type factor: float\n"
" :arg size: The size of the shear matrix to construct [2, 4].\n"
" :type size: int\n"
" :return: A new shear matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
{
int matSize;
char *plane;
float factor;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if((strcmp(plane, "X") == 0)
&& matSize == 2) {
mat[0] = 1.0f;
mat[2] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[6] = factor;
mat[7] = factor;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
/* assumes rowsize == colsize is checked and the read callback has run */
static float matrix_determinant(MatrixObject * self)
{
@ -1326,6 +1758,13 @@ static struct PyMethodDef Matrix_methods[] = {
{"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
/* class methods */
{"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
{"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
{"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
{"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
{"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
{NULL, NULL, 0, NULL}
};