Code cleanup: remove unused Cycles random number code.

This commit is contained in:
Brecht Van Lommel 2017-08-06 21:14:58 +02:00
parent 6919393a51
commit 601f94a3c2
5 changed files with 7 additions and 117 deletions

@ -825,8 +825,6 @@ ccl_device void kernel_path_trace(KernelGlobals *kg,
else {
kernel_write_result(kg, buffer, sample, NULL, 0.0f, false);
}
path_rng_end(kg, rng_state, rng);
}
#endif /* __SPLIT_KERNEL__ */

@ -673,8 +673,6 @@ ccl_device void kernel_branched_path_trace(KernelGlobals *kg,
else {
kernel_write_result(kg, buffer, sample, NULL, 0.0f, false);
}
path_rng_end(kg, rng_state, rng);
}
#endif /* __SPLIT_KERNEL__ */

@ -28,42 +28,6 @@ CCL_NAMESPACE_BEGIN
/* High Dimensional Sobol. */
/* Van der Corput radical inverse. */
ccl_device uint van_der_corput(uint bits)
{
bits = (bits << 16) | (bits >> 16);
bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);
return bits;
}
/* Sobol radical inverse. */
ccl_device uint sobol(uint i)
{
uint r = 0;
for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1) {
if(i & 1) {
r ^= v;
}
}
return r;
}
/* Inverse of sobol radical inverse. */
ccl_device uint sobol_inverse(uint i)
{
const uint msb = 1U << 31;
uint r = 0;
for(uint v = 1; i; i <<= 1, v ^= v << 1) {
if(i & msb) {
r ^= v;
}
}
return r;
}
/* Multidimensional sobol with generator matrices
* dimension 0 and 1 are equal to van_der_corput() and sobol() respectively.
*/
@ -79,31 +43,6 @@ ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
return result;
}
/* Lookup index and x/y coordinate, assumes m is a power of two. */
ccl_device uint sobol_lookup(const uint m,
const uint frame,
const uint ex,
const uint ey,
uint *x, uint *y)
{
/* Shift is constant per frame. */
const uint shift = frame << (m << 1);
const uint sobol_shift = sobol(shift);
/* Van der Corput is its own inverse. */
const uint lower = van_der_corput(ex << (32 - m));
/* Need to compensate for ey difference and shift. */
const uint sobol_lower = sobol(lower);
const uint mask = ~-(1 << m) << (32 - m); /* Only m upper bits. */
const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask;
/* Only use m upper bits for the index (m is a power of two). */
const uint sobol_result = delta | (delta >> m);
const uint upper = sobol_inverse(sobol_result);
const uint index = shift | upper | lower;
*x = van_der_corput(index);
*y = sobol_shift ^ sobol_result ^ sobol_lower;
return index;
}
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
@ -117,11 +56,6 @@ ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
}
#endif
#ifdef __SOBOL_FULL_SCREEN__
uint result = sobol_dimension(kg, *rng, dimension);
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
return r;
#else
/* Compute sobol sequence value using direction vectors. */
uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
@ -136,7 +70,6 @@ ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
shift = tmp_rng * (1.0f/(float)0xFFFFFFFF);
return r + shift - floorf(r + shift);
#endif
}
ccl_device_forceinline void path_rng_2D(KernelGlobals *kg,
@ -167,25 +100,6 @@ ccl_device_inline void path_rng_init(KernelGlobals *kg,
int x, int y,
float *fx, float *fy)
{
#ifdef __SOBOL_FULL_SCREEN__
uint px, py;
uint bits = 16; /* limits us to 65536x65536 and 65536 samples */
uint size = 1 << bits;
uint frame = sample;
*rng = sobol_lookup(bits, frame, x, y, &px, &py);
*rng ^= kernel_data.integrator.seed;
if(sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
}
else {
*fx = size * (float)px * (1.0f/(float)0xFFFFFFFF) - x;
*fy = size * (float)py * (1.0f/(float)0xFFFFFFFF) - y;
}
#else
*rng = *rng_state;
*rng ^= kernel_data.integrator.seed;
@ -197,28 +111,19 @@ ccl_device_inline void path_rng_init(KernelGlobals *kg,
else {
path_rng_2D(kg, rng, sample, num_samples, PRNG_FILTER_U, fx, fy);
}
#endif
}
ccl_device void path_rng_end(KernelGlobals *kg,
ccl_global uint *rng_state,
RNG rng)
{
/* nothing to do */
}
#else /* __SOBOL__ */
/* Linear Congruential Generator */
/* Pseudo random numbers, use this only on the CPU with a single thread
* for debugging correlations. */
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
int dimension)
{
/* implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
return (float)drand48();
}
ccl_device_inline void path_rng_2D(KernelGlobals *kg,
@ -227,8 +132,8 @@ ccl_device_inline void path_rng_2D(KernelGlobals *kg,
int dimension,
float *fx, float *fy)
{
*fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
*fx = (float)drand48();
*fy = (float)drand48();
}
ccl_device void path_rng_init(KernelGlobals *kg,
@ -240,9 +145,10 @@ ccl_device void path_rng_init(KernelGlobals *kg,
{
/* load state */
*rng = *rng_state;
*rng ^= kernel_data.integrator.seed;
srand48(*rng);
if(sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
@ -252,14 +158,6 @@ ccl_device void path_rng_init(KernelGlobals *kg,
}
}
ccl_device void path_rng_end(KernelGlobals *kg,
ccl_global uint *rng_state,
RNG rng)
{
/* store state for next sample */
*rng_state = rng;
}
#endif /* __SOBOL__ */
/* Linear Congruential Generator */

@ -119,8 +119,6 @@ ccl_device void kernel_buffer_update(KernelGlobals *kg,
bool is_shadow_catcher = (state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_write_result(kg, buffer, sample, L, 1.0f - (*L_transparent), is_shadow_catcher);
path_rng_end(kg, rng_state, rng);
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
}
@ -169,7 +167,6 @@ ccl_device void kernel_buffer_update(KernelGlobals *kg,
float4 L_rad = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* Accumulate result in output buffer. */
kernel_write_pass_float4(buffer, sample, L_rad);
path_rng_end(kg, rng_state, rng);
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
}

@ -96,7 +96,6 @@ ccl_device void kernel_path_init(KernelGlobals *kg) {
float4 L_rad = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* Accumulate result in output buffer. */
kernel_write_pass_float4(buffer, my_sample, L_rad);
path_rng_end(kg, rng_state, kernel_split_state.rng[ray_index]);
ASSIGN_RAY_STATE(kernel_split_state.ray_state, ray_index, RAY_TO_REGENERATE);
}
kernel_split_state.rng[ray_index] = rng;