Hair volume calculation is now in its own file.

Code is currently disabled until the other main forces are in place.
This commit is contained in:
Lukas Tönne 2014-09-14 18:08:14 +02:00
parent b9b784f039
commit 64de714a08
3 changed files with 486 additions and 447 deletions

@ -41,6 +41,7 @@ set(INC_SYS
set(SRC
intern/BPH_mass_spring.cpp
intern/ConstrainedConjugateGradient.h
intern/hair_volume.c
intern/implicit.h
intern/implicit_blender.c
intern/implicit_eigen.cpp

@ -0,0 +1,483 @@
/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Janne Karhu, Lukas Toenne
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/hair_volume.c
* \ingroup bph
*/
#include "BLI_math.h"
#include "BLI_utildefines.h"
#if 0 // XXX TODO
/* ================ Volumetric Hair Interaction ================
* adapted from
* Volumetric Methods for Simulation and Rendering of Hair
* by Lena Petrovic, Mark Henne and John Anderson
* Pixar Technical Memo #06-08, Pixar Animation Studios
*/
/* Note about array indexing:
* Generally the arrays here are one-dimensional.
* The relation between 3D indices and the array offset is
* offset = x + res_x * y + res_y * z
*/
/* TODO: This is an initial implementation and should be made much better in due time.
* What should at least be implemented is a grid size parameter and a smoothing kernel
* for bigger grids.
*/
/* 10x10x10 grid gives nice initial results */
static const int hair_grid_res = 10;
static int hair_grid_size(int res)
{
return res * res * res;
}
BLI_INLINE void hair_grid_get_scale(int res, const float gmin[3], const float gmax[3], float scale[3])
{
sub_v3_v3v3(scale, gmax, gmin);
mul_v3_fl(scale, 1.0f / (res-1));
}
typedef struct HairGridVert {
float velocity[3];
float density;
} HairGridVert;
#define HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, axis) ( min_ii( max_ii( (int)((vec[axis] - gmin[axis]) / scale[axis]), 0), res-2 ) )
BLI_INLINE int hair_grid_offset(const float vec[3], int res, const float gmin[3], const float scale[3])
{
int i, j, k;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
return i + (j + k*res)*res;
}
BLI_INLINE int hair_grid_interp_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float uvw[3])
{
int i, j, k, offset;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res)*res;
uvw[0] = (vec[0] - gmin[0]) / scale[0] - (float)i;
uvw[1] = (vec[1] - gmin[1]) / scale[1] - (float)j;
uvw[2] = (vec[2] - gmin[2]) / scale[2] - (float)k;
return offset;
}
BLI_INLINE void hair_grid_interpolate(const HairGridVert *grid, int res, const float gmin[3], const float scale[3], const float vec[3],
float *density, float velocity[3], float density_gradient[3])
{
HairGridVert data[8];
float uvw[3], muvw[3];
int res2 = res * res;
int offset;
offset = hair_grid_interp_weights(res, gmin, scale, vec, uvw);
muvw[0] = 1.0f - uvw[0];
muvw[1] = 1.0f - uvw[1];
muvw[2] = 1.0f - uvw[2];
data[0] = grid[offset ];
data[1] = grid[offset +1];
data[2] = grid[offset +res ];
data[3] = grid[offset +res+1];
data[4] = grid[offset+res2 ];
data[5] = grid[offset+res2 +1];
data[6] = grid[offset+res2+res ];
data[7] = grid[offset+res2+res+1];
if (density) {
*density = muvw[2]*( muvw[1]*( muvw[0]*data[0].density + uvw[0]*data[1].density ) +
uvw[1]*( muvw[0]*data[2].density + uvw[0]*data[3].density ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].density + uvw[0]*data[5].density ) +
uvw[1]*( muvw[0]*data[6].density + uvw[0]*data[7].density ) );
}
if (velocity) {
int k;
for (k = 0; k < 3; ++k) {
velocity[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity[k] + uvw[0]*data[1].velocity[k] ) +
uvw[1]*( muvw[0]*data[2].velocity[k] + uvw[0]*data[3].velocity[k] ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity[k] + uvw[0]*data[5].velocity[k] ) +
uvw[1]*( muvw[0]*data[6].velocity[k] + uvw[0]*data[7].velocity[k] ) );
}
}
if (density_gradient) {
density_gradient[0] = muvw[1] * muvw[2] * ( data[0].density - data[1].density ) +
uvw[1] * muvw[2] * ( data[2].density - data[3].density ) +
muvw[1] * uvw[2] * ( data[4].density - data[5].density ) +
uvw[1] * uvw[2] * ( data[6].density - data[7].density );
density_gradient[1] = muvw[2] * muvw[0] * ( data[0].density - data[2].density ) +
uvw[2] * muvw[0] * ( data[4].density - data[6].density ) +
muvw[2] * uvw[0] * ( data[1].density - data[3].density ) +
uvw[2] * uvw[0] * ( data[5].density - data[7].density );
density_gradient[2] = muvw[2] * muvw[0] * ( data[0].density - data[4].density ) +
uvw[2] * muvw[0] * ( data[1].density - data[5].density ) +
muvw[2] * uvw[0] * ( data[2].density - data[6].density ) +
uvw[2] * uvw[0] * ( data[3].density - data[7].density );
}
}
static void hair_velocity_smoothing(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float smoothfac,
lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
float density, velocity[3];
hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, velocity, NULL);
sub_v3_v3(velocity, lV[v]);
madd_v3_v3fl(lF[v], velocity, smoothfac);
}
}
static void hair_velocity_collision(const HairGridVert *collgrid, const float gmin[3], const float scale[3], float collfac,
lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
int offset = hair_grid_offset(lX[v], hair_grid_res, gmin, scale);
if (collgrid[offset].density > 0.0f) {
lF[v][0] += collfac * (collgrid[offset].velocity[0] - lV[v][0]);
lF[v][1] += collfac * (collgrid[offset].velocity[1] - lV[v][1]);
lF[v][2] += collfac * (collgrid[offset].velocity[2] - lV[v][2]);
}
}
}
static void hair_pressure_force(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float pressurefac, float minpressure,
lfVector *lF, lfVector *lX, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
float density, gradient[3], gradlen;
hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, NULL, gradient);
gradlen = normalize_v3(gradient) - minpressure;
if (gradlen < 0.0f)
continue;
mul_v3_fl(gradient, gradlen);
madd_v3_v3fl(lF[v], gradient, pressurefac);
}
}
static void hair_volume_get_boundbox(lfVector *lX, unsigned int numverts, float gmin[3], float gmax[3])
{
int i;
INIT_MINMAX(gmin, gmax);
for (i = 0; i < numverts; i++)
DO_MINMAX(lX[i], gmin, gmax);
}
BLI_INLINE bool hair_grid_point_valid(const float vec[3], float gmin[3], float gmax[3])
{
return !(vec[0] < gmin[0] || vec[1] < gmin[1] || vec[2] < gmin[2] ||
vec[0] > gmax[0] || vec[1] > gmax[1] || vec[2] > gmax[2]);
}
BLI_INLINE float dist_tent_v3f3(const float a[3], float x, float y, float z)
{
float w = (1.0f - fabsf(a[0] - x)) * (1.0f - fabsf(a[1] - y)) * (1.0f - fabsf(a[2] - z));
return w;
}
/* returns the grid array offset as well to avoid redundant calculation */
static int hair_grid_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float weights[8])
{
int i, j, k, offset;
float uvw[3];
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res)*res;
uvw[0] = (vec[0] - gmin[0]) / scale[0];
uvw[1] = (vec[1] - gmin[1]) / scale[1];
uvw[2] = (vec[2] - gmin[2]) / scale[2];
weights[0] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)k );
weights[1] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)k );
weights[2] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)k );
weights[3] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)k );
weights[4] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)(k+1));
weights[5] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)(k+1));
weights[6] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)(k+1));
weights[7] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)(k+1));
return offset;
}
static HairGridVert *hair_volume_create_hair_grid(ClothModifierData *clmd, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int res = hair_grid_res;
int size = hair_grid_size(res);
HairGridVert *hairgrid;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
unsigned int v = 0;
int i = 0;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(res, gmin, gmax, scale);
hairgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair voxel data");
/* initialize grid */
for (i = 0; i < size; ++i) {
zero_v3(hairgrid[i].velocity);
hairgrid[i].density = 0.0f;
}
/* gather velocities & density */
if (smoothfac > 0.0f) {
for (v = 0; v < numverts; v++) {
float *V = lV[v];
float weights[8];
int di, dj, dk;
int offset;
if (!hair_grid_point_valid(lX[v], gmin, gmax))
continue;
offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res)*res;
int iw = di + dj*2 + dk*4;
hairgrid[voffset].density += weights[iw];
madd_v3_v3fl(hairgrid[voffset].velocity, V, weights[iw]);
}
}
}
}
}
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = hairgrid[i].density;
if (density > 0.0f)
mul_v3_fl(hairgrid[i].velocity, 1.0f/density);
}
return hairgrid;
}
static HairGridVert *hair_volume_create_collision_grid(ClothModifierData *clmd, lfVector *lX, unsigned int numverts)
{
int res = hair_grid_res;
int size = hair_grid_size(res);
HairGridVert *collgrid;
ListBase *colliders;
ColliderCache *col = NULL;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float collfac = 2.0f * clmd->sim_parms->collider_friction;
unsigned int v = 0;
int i = 0;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(res, gmin, gmax, scale);
collgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair collider voxel data");
/* initialize grid */
for (i = 0; i < size; ++i) {
zero_v3(collgrid[i].velocity);
collgrid[i].density = 0.0f;
}
/* gather colliders */
colliders = get_collider_cache(clmd->scene, NULL, NULL);
if (colliders && collfac > 0.0f) {
for (col = colliders->first; col; col = col->next) {
MVert *loc0 = col->collmd->x;
MVert *loc1 = col->collmd->xnew;
float vel[3];
float weights[8];
int di, dj, dk;
for (v=0; v < col->collmd->numverts; v++, loc0++, loc1++) {
int offset;
if (!hair_grid_point_valid(loc1->co, gmin, gmax))
continue;
offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
sub_v3_v3v3(vel, loc1->co, loc0->co);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res)*res;
int iw = di + dj*2 + dk*4;
collgrid[voffset].density += weights[iw];
madd_v3_v3fl(collgrid[voffset].velocity, vel, weights[iw]);
}
}
}
}
}
}
free_collider_cache(&colliders);
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = collgrid[i].density;
if (density > 0.0f)
mul_v3_fl(collgrid[i].velocity, 1.0f/density);
}
return collgrid;
}
static void hair_volume_forces(ClothModifierData *clmd, lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
HairGridVert *hairgrid, *collgrid;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
float collfac = 2.0f * clmd->sim_parms->collider_friction;
float pressfac = clmd->sim_parms->pressure;
float minpress = clmd->sim_parms->pressure_threshold;
if (smoothfac <= 0.0f && collfac <= 0.0f && pressfac <= 0.0f)
return;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(hair_grid_res, gmin, gmax, scale);
hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
hair_velocity_smoothing(hairgrid, gmin, scale, smoothfac, lF, lX, lV, numverts);
hair_velocity_collision(collgrid, gmin, scale, collfac, lF, lX, lV, numverts);
hair_pressure_force(hairgrid, gmin, scale, pressfac, minpress, lF, lX, numverts);
MEM_freeN(hairgrid);
MEM_freeN(collgrid);
}
#if 0
bool implicit_hair_volume_get_texture_data(Object *UNUSED(ob), ClothModifierData *clmd, ListBase *UNUSED(effectors), VoxelData *vd)
{
lfVector *lX, *lV;
HairGridVert *hairgrid/*, *collgrid*/;
int numverts;
int totres, i;
int depth;
if (!clmd->clothObject || !clmd->clothObject->implicit)
return false;
lX = clmd->clothObject->implicit->X;
lV = clmd->clothObject->implicit->V;
numverts = clmd->clothObject->numverts;
hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
// collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
vd->resol[0] = hair_grid_res;
vd->resol[1] = hair_grid_res;
vd->resol[2] = hair_grid_res;
totres = hair_grid_size(hair_grid_res);
if (vd->hair_type == TEX_VD_HAIRVELOCITY) {
depth = 4;
vd->data_type = TEX_VD_RGBA_PREMUL;
}
else {
depth = 1;
vd->data_type = TEX_VD_INTENSITY;
}
if (totres > 0) {
vd->dataset = (float *)MEM_mapallocN(sizeof(float) * depth * (totres), "hair volume texture data");
for (i = 0; i < totres; ++i) {
switch (vd->hair_type) {
case TEX_VD_HAIRDENSITY:
vd->dataset[i] = hairgrid[i].density;
break;
case TEX_VD_HAIRRESTDENSITY:
vd->dataset[i] = 0.0f; // TODO
break;
case TEX_VD_HAIRVELOCITY:
vd->dataset[i + 0*totres] = hairgrid[i].velocity[0];
vd->dataset[i + 1*totres] = hairgrid[i].velocity[1];
vd->dataset[i + 2*totres] = hairgrid[i].velocity[2];
vd->dataset[i + 3*totres] = len_v3(hairgrid[i].velocity);
break;
case TEX_VD_HAIRENERGY:
vd->dataset[i] = 0.0f; // TODO
break;
}
}
}
else {
vd->dataset = NULL;
}
MEM_freeN(hairgrid);
// MEM_freeN(collgrid);
return true;
}
#endif
#endif

@ -1567,452 +1567,6 @@ static float calculateVertexWindForce(const float wind[3], const float vertexnor
return dot_v3v3(wind, vertexnormal);
}
/* ================ Volumetric Hair Interaction ================
* adapted from
* Volumetric Methods for Simulation and Rendering of Hair
* by Lena Petrovic, Mark Henne and John Anderson
* Pixar Technical Memo #06-08, Pixar Animation Studios
*/
/* Note about array indexing:
* Generally the arrays here are one-dimensional.
* The relation between 3D indices and the array offset is
* offset = x + res_x * y + res_y * z
*/
/* TODO: This is an initial implementation and should be made much better in due time.
* What should at least be implemented is a grid size parameter and a smoothing kernel
* for bigger grids.
*/
/* 10x10x10 grid gives nice initial results */
static const int hair_grid_res = 10;
static int hair_grid_size(int res)
{
return res * res * res;
}
BLI_INLINE void hair_grid_get_scale(int res, const float gmin[3], const float gmax[3], float scale[3])
{
sub_v3_v3v3(scale, gmax, gmin);
mul_v3_fl(scale, 1.0f / (res-1));
}
typedef struct HairGridVert {
float velocity[3];
float density;
} HairGridVert;
#define HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, axis) ( min_ii( max_ii( (int)((vec[axis] - gmin[axis]) / scale[axis]), 0), res-2 ) )
BLI_INLINE int hair_grid_offset(const float vec[3], int res, const float gmin[3], const float scale[3])
{
int i, j, k;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
return i + (j + k*res)*res;
}
BLI_INLINE int hair_grid_interp_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float uvw[3])
{
int i, j, k, offset;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res)*res;
uvw[0] = (vec[0] - gmin[0]) / scale[0] - (float)i;
uvw[1] = (vec[1] - gmin[1]) / scale[1] - (float)j;
uvw[2] = (vec[2] - gmin[2]) / scale[2] - (float)k;
return offset;
}
BLI_INLINE void hair_grid_interpolate(const HairGridVert *grid, int res, const float gmin[3], const float scale[3], const float vec[3],
float *density, float velocity[3], float density_gradient[3])
{
HairGridVert data[8];
float uvw[3], muvw[3];
int res2 = res * res;
int offset;
offset = hair_grid_interp_weights(res, gmin, scale, vec, uvw);
muvw[0] = 1.0f - uvw[0];
muvw[1] = 1.0f - uvw[1];
muvw[2] = 1.0f - uvw[2];
data[0] = grid[offset ];
data[1] = grid[offset +1];
data[2] = grid[offset +res ];
data[3] = grid[offset +res+1];
data[4] = grid[offset+res2 ];
data[5] = grid[offset+res2 +1];
data[6] = grid[offset+res2+res ];
data[7] = grid[offset+res2+res+1];
if (density) {
*density = muvw[2]*( muvw[1]*( muvw[0]*data[0].density + uvw[0]*data[1].density ) +
uvw[1]*( muvw[0]*data[2].density + uvw[0]*data[3].density ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].density + uvw[0]*data[5].density ) +
uvw[1]*( muvw[0]*data[6].density + uvw[0]*data[7].density ) );
}
if (velocity) {
int k;
for (k = 0; k < 3; ++k) {
velocity[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity[k] + uvw[0]*data[1].velocity[k] ) +
uvw[1]*( muvw[0]*data[2].velocity[k] + uvw[0]*data[3].velocity[k] ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity[k] + uvw[0]*data[5].velocity[k] ) +
uvw[1]*( muvw[0]*data[6].velocity[k] + uvw[0]*data[7].velocity[k] ) );
}
}
if (density_gradient) {
density_gradient[0] = muvw[1] * muvw[2] * ( data[0].density - data[1].density ) +
uvw[1] * muvw[2] * ( data[2].density - data[3].density ) +
muvw[1] * uvw[2] * ( data[4].density - data[5].density ) +
uvw[1] * uvw[2] * ( data[6].density - data[7].density );
density_gradient[1] = muvw[2] * muvw[0] * ( data[0].density - data[2].density ) +
uvw[2] * muvw[0] * ( data[4].density - data[6].density ) +
muvw[2] * uvw[0] * ( data[1].density - data[3].density ) +
uvw[2] * uvw[0] * ( data[5].density - data[7].density );
density_gradient[2] = muvw[2] * muvw[0] * ( data[0].density - data[4].density ) +
uvw[2] * muvw[0] * ( data[1].density - data[5].density ) +
muvw[2] * uvw[0] * ( data[2].density - data[6].density ) +
uvw[2] * uvw[0] * ( data[3].density - data[7].density );
}
}
static void hair_velocity_smoothing(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float smoothfac,
lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
float density, velocity[3];
hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, velocity, NULL);
sub_v3_v3(velocity, lV[v]);
madd_v3_v3fl(lF[v], velocity, smoothfac);
}
}
static void hair_velocity_collision(const HairGridVert *collgrid, const float gmin[3], const float scale[3], float collfac,
lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
int offset = hair_grid_offset(lX[v], hair_grid_res, gmin, scale);
if (collgrid[offset].density > 0.0f) {
lF[v][0] += collfac * (collgrid[offset].velocity[0] - lV[v][0]);
lF[v][1] += collfac * (collgrid[offset].velocity[1] - lV[v][1]);
lF[v][2] += collfac * (collgrid[offset].velocity[2] - lV[v][2]);
}
}
}
static void hair_pressure_force(const HairGridVert *hairgrid, const float gmin[3], const float scale[3], float pressurefac, float minpressure,
lfVector *lF, lfVector *lX, unsigned int numverts)
{
int v;
/* calculate forces */
for (v = 0; v < numverts; v++) {
float density, gradient[3], gradlen;
hair_grid_interpolate(hairgrid, hair_grid_res, gmin, scale, lX[v], &density, NULL, gradient);
gradlen = normalize_v3(gradient) - minpressure;
if (gradlen < 0.0f)
continue;
mul_v3_fl(gradient, gradlen);
madd_v3_v3fl(lF[v], gradient, pressurefac);
}
}
static void hair_volume_get_boundbox(lfVector *lX, unsigned int numverts, float gmin[3], float gmax[3])
{
int i;
INIT_MINMAX(gmin, gmax);
for (i = 0; i < numverts; i++)
DO_MINMAX(lX[i], gmin, gmax);
}
BLI_INLINE bool hair_grid_point_valid(const float vec[3], float gmin[3], float gmax[3])
{
return !(vec[0] < gmin[0] || vec[1] < gmin[1] || vec[2] < gmin[2] ||
vec[0] > gmax[0] || vec[1] > gmax[1] || vec[2] > gmax[2]);
}
BLI_INLINE float dist_tent_v3f3(const float a[3], float x, float y, float z)
{
float w = (1.0f - fabsf(a[0] - x)) * (1.0f - fabsf(a[1] - y)) * (1.0f - fabsf(a[2] - z));
return w;
}
/* returns the grid array offset as well to avoid redundant calculation */
static int hair_grid_weights(int res, const float gmin[3], const float scale[3], const float vec[3], float weights[8])
{
int i, j, k, offset;
float uvw[3];
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res)*res;
uvw[0] = (vec[0] - gmin[0]) / scale[0];
uvw[1] = (vec[1] - gmin[1]) / scale[1];
uvw[2] = (vec[2] - gmin[2]) / scale[2];
weights[0] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)k );
weights[1] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)k );
weights[2] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)k );
weights[3] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)k );
weights[4] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)(k+1));
weights[5] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)(k+1));
weights[6] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)(k+1));
weights[7] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)(k+1));
return offset;
}
static HairGridVert *hair_volume_create_hair_grid(ClothModifierData *clmd, lfVector *lX, lfVector *lV, unsigned int numverts)
{
int res = hair_grid_res;
int size = hair_grid_size(res);
HairGridVert *hairgrid;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
unsigned int v = 0;
int i = 0;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(res, gmin, gmax, scale);
hairgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair voxel data");
/* initialize grid */
for (i = 0; i < size; ++i) {
zero_v3(hairgrid[i].velocity);
hairgrid[i].density = 0.0f;
}
/* gather velocities & density */
if (smoothfac > 0.0f) {
for (v = 0; v < numverts; v++) {
float *V = lV[v];
float weights[8];
int di, dj, dk;
int offset;
if (!hair_grid_point_valid(lX[v], gmin, gmax))
continue;
offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res)*res;
int iw = di + dj*2 + dk*4;
hairgrid[voffset].density += weights[iw];
madd_v3_v3fl(hairgrid[voffset].velocity, V, weights[iw]);
}
}
}
}
}
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = hairgrid[i].density;
if (density > 0.0f)
mul_v3_fl(hairgrid[i].velocity, 1.0f/density);
}
return hairgrid;
}
static HairGridVert *hair_volume_create_collision_grid(ClothModifierData *clmd, lfVector *lX, unsigned int numverts)
{
int res = hair_grid_res;
int size = hair_grid_size(res);
HairGridVert *collgrid;
ListBase *colliders;
ColliderCache *col = NULL;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float collfac = 2.0f * clmd->sim_parms->collider_friction;
unsigned int v = 0;
int i = 0;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(res, gmin, gmax, scale);
collgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair collider voxel data");
/* initialize grid */
for (i = 0; i < size; ++i) {
zero_v3(collgrid[i].velocity);
collgrid[i].density = 0.0f;
}
/* gather colliders */
colliders = get_collider_cache(clmd->scene, NULL, NULL);
if (colliders && collfac > 0.0f) {
for (col = colliders->first; col; col = col->next) {
MVert *loc0 = col->collmd->x;
MVert *loc1 = col->collmd->xnew;
float vel[3];
float weights[8];
int di, dj, dk;
for (v=0; v < col->collmd->numverts; v++, loc0++, loc1++) {
int offset;
if (!hair_grid_point_valid(loc1->co, gmin, gmax))
continue;
offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
sub_v3_v3v3(vel, loc1->co, loc0->co);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res)*res;
int iw = di + dj*2 + dk*4;
collgrid[voffset].density += weights[iw];
madd_v3_v3fl(collgrid[voffset].velocity, vel, weights[iw]);
}
}
}
}
}
}
free_collider_cache(&colliders);
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = collgrid[i].density;
if (density > 0.0f)
mul_v3_fl(collgrid[i].velocity, 1.0f/density);
}
return collgrid;
}
static void hair_volume_forces(ClothModifierData *clmd, lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
HairGridVert *hairgrid, *collgrid;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
float collfac = 2.0f * clmd->sim_parms->collider_friction;
float pressfac = clmd->sim_parms->pressure;
float minpress = clmd->sim_parms->pressure_threshold;
if (smoothfac <= 0.0f && collfac <= 0.0f && pressfac <= 0.0f)
return;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(hair_grid_res, gmin, gmax, scale);
hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
hair_velocity_smoothing(hairgrid, gmin, scale, smoothfac, lF, lX, lV, numverts);
hair_velocity_collision(collgrid, gmin, scale, collfac, lF, lX, lV, numverts);
hair_pressure_force(hairgrid, gmin, scale, pressfac, minpress, lF, lX, numverts);
MEM_freeN(hairgrid);
MEM_freeN(collgrid);
}
bool implicit_hair_volume_get_texture_data(Object *UNUSED(ob), ClothModifierData *clmd, ListBase *UNUSED(effectors), VoxelData *vd)
{
lfVector *lX, *lV;
HairGridVert *hairgrid/*, *collgrid*/;
int numverts;
int totres, i;
int depth;
if (!clmd->clothObject || !clmd->clothObject->implicit)
return false;
lX = clmd->clothObject->implicit->X;
lV = clmd->clothObject->implicit->V;
numverts = clmd->clothObject->numverts;
hairgrid = hair_volume_create_hair_grid(clmd, lX, lV, numverts);
// collgrid = hair_volume_create_collision_grid(clmd, lX, numverts);
vd->resol[0] = hair_grid_res;
vd->resol[1] = hair_grid_res;
vd->resol[2] = hair_grid_res;
totres = hair_grid_size(hair_grid_res);
if (vd->hair_type == TEX_VD_HAIRVELOCITY) {
depth = 4;
vd->data_type = TEX_VD_RGBA_PREMUL;
}
else {
depth = 1;
vd->data_type = TEX_VD_INTENSITY;
}
if (totres > 0) {
vd->dataset = (float *)MEM_mapallocN(sizeof(float) * depth * (totres), "hair volume texture data");
for (i = 0; i < totres; ++i) {
switch (vd->hair_type) {
case TEX_VD_HAIRDENSITY:
vd->dataset[i] = hairgrid[i].density;
break;
case TEX_VD_HAIRRESTDENSITY:
vd->dataset[i] = 0.0f; // TODO
break;
case TEX_VD_HAIRVELOCITY:
vd->dataset[i + 0*totres] = hairgrid[i].velocity[0];
vd->dataset[i + 1*totres] = hairgrid[i].velocity[1];
vd->dataset[i + 2*totres] = hairgrid[i].velocity[2];
vd->dataset[i + 3*totres] = len_v3(hairgrid[i].velocity);
break;
case TEX_VD_HAIRENERGY:
vd->dataset[i] = 0.0f; // TODO
break;
}
}
}
else {
vd->dataset = NULL;
}
MEM_freeN(hairgrid);
// MEM_freeN(collgrid);
return true;
}
/* ================================ */
static void cloth_calc_force(ClothModifierData *clmd, float UNUSED(frame), lfVector *lF, lfVector *lX, lfVector *lV, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX, ListBase *effectors, float time, fmatrix3x3 *M)
{
/* Collect forces and derivatives: F, dFdX, dFdV */
@ -2052,7 +1606,8 @@ static void cloth_calc_force(ClothModifierData *clmd, float UNUSED(frame), lfVec
zero_lfvector(lF, numverts);
#endif
hair_volume_forces(clmd, lF, lX, lV, numverts);
// XXX TODO
// hair_volume_forces(clmd, lF, lX, lV, numverts);
#ifdef CLOTH_FORCE_DRAG
/* set dFdX jacobi matrix diagonal entries to -spring_air */